Skip to main content

A Concentration Inequality for Harmonic Measures on the Sphere

  • Conference paper
Geometric Aspects of Functional Analysis

Part of the book series: Operator Theory Advances and Applications ((OT,volume 77))

Abstract

Let μ be the normalized Lebesgue measure on S n −1. For x = (x 1,…,x n ) with ||x||2 < 1 we denote by μx the probability measure on S n −1 given by \( \frac{{1 - {{\left\| x \right\|}^2}}} {{{{\left\| {y - x} \right\|}^n}}}d\mu \left( y \right) \). We recall that if f is an integrable function on S n -1 then u(x) = \( u(x) = {\int_{{S^{n - 1}}} {f(y)d\mu }^x}(y) \) is a harmonic function whose radial limits are equal μ-almost everywhere to f.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.W. Anderson, The integral of a Symmetric Unimodal Function over a Symmetric Convex Set and some Probability Inequalities, Proc. Amer. Math. Soc. 6, 170–176, 1955.

    Article  MathSciNet  MATH  Google Scholar 

  2. K. Ball, Volume of Sections of Cubes and Related Problems, G AFA 1987–88, SLNM 1376.

    Google Scholar 

  3. H.J. Brascamp and E.H. Lieb, On Extensions of the Brunn-Minkowski and Prekopa-Leindler Theorems, Including Inequalities for Log Concave Functions, and with an Application to the Diffusion Equation, J. Fune. Analysis 22, 366–389, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  4. H.J. Brascamp and E.H. Lieb, Best Constants in Young’s Inequality, its Converse and its Generalization to more than three Functions, Advances in Math. 20, 151–173, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  5. H.J. Brascamp, E.H. Lieb and J.M. Luttinger, A General Rearrangement Inequality for Multiple Integrals, J. Fune. Analysis, 17, 227–237, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  6. D.L. Burkholder, Distribution Function Inequalities for Martingales, Annals Prob, 1, 1, 19–24, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  7. D.L. Burkholder, Exit Times of Brownian Motion, Harmonic Majorization and Hardy Spaces, Advances Math 26, 182–205, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  8. K.L. Chung, Lectures from Markov Processes to Brownian Motion, Springer, 1982.

    MATH  Google Scholar 

  9. I. Chavel, Eigenvalues in Riemannian Geometry, Academic Press, 1984.

    Google Scholar 

  10. R. Durrett, Brownian Motion and Martingales in Analysis, Wordsworth, 1984.

    Google Scholar 

  11. R.K. Getoor and M.J. Sharp. Excursions of Brownian Motion and Bessel Processes, Z. Wahrscheinlichkeitstheorie verw. Gebiete 47, 83–106, 1979.

    Article  MATH  Google Scholar 

  12. B. Kawohl, When are.Solutions to Nonlinear Elliptíc Boundary Value Problems Convex, Comm. Partial Diff. Eq. 10, 1213–1225, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Kennington, An Improved Concavity Maximum Principle and some Applications, Thesis, Adelaide, 1984.

    Google Scholar 

  14. N.J. Korevaar, Convex Solutions to Nonlinear Elliptic and Parabolic Boundary Value Problems, Indiana Univ. Math. J. 32, 603–614.

    Google Scholar 

  15. M. Ledoux and M. Talagrand, Probability in Banach Spaces, Ergebnisse der Mathematik, Springer 1991.

    Google Scholar 

  16. V.D. Milman and G. Schechtman, Asymptotic Theory of Finite Dimensional Normed Spaces, Lecture Notes in Math. No. 1200, Springer, 1986.

    MATH  Google Scholar 

  17. W. Rudin, Complex Analysis on the Unit Ball of C n, Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Lindenstrauss V. Milman

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Schechtman, G., Schmuckenschläger, M. (1995). A Concentration Inequality for Harmonic Measures on the Sphere. In: Lindenstrauss, J., Milman, V. (eds) Geometric Aspects of Functional Analysis. Operator Theory Advances and Applications, vol 77. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9090-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9090-8_22

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9902-4

  • Online ISBN: 978-3-0348-9090-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics