Advertisement

Embedding n-Cubes in Low Dimensional Schatten Classes

  • Jesús Bastero
  • Ana Peña
  • Gideon Schechtman
Conference paper
Part of the Operator Theory Advances and Applications book series (OT, volume 77)

Abstract

We prove that for some α = α(ε) > 0, the αn2 -cube (1 + ε)-embeds in the Schatten class C n E , for every 1-symmetric n-dimensional normed space E.

Keywords

Orthogonal Projection Haar Measure Unitary Ideal Real Normed Space Euclidean Scalar Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B-B]
    Bastero, J., Berimés, J.: Applications of deviation inequalities on finite metric sets, Math. Nach. 153 (1991), 33–41.zbMATHCrossRefGoogle Scholar
  2. [B-B-K]
    Bastero, J., Bernués, J., Kalton, N.: Embedding n -cubes in finite dimensional 1-subsymmetric spaces, Rev. Matemática Univ. Complutense, Madrid 2 (1989), 47–52.Google Scholar
  3. [B-M-W]
    Bourgain, J., Milman, V.D., Wolfson, H.: On type of metric spaces, Transactions AMS 294:1 (1986), 295–317.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [G-K]
    Gohberg, I.C., Krein, M.G.: Introduction to the theory of linear non-selfadjoint operators, AMS, 1969.Google Scholar
  5. [M-S]
    Milman, V., Schechtman, G.: Asymptotic theory of finite dimensional normed spaces, Lect. Notes in Math. 1200. Springer-Verlag 1986.zbMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1995

Authors and Affiliations

  • Jesús Bastero
    • 1
  • Ana Peña
    • 1
  • Gideon Schechtman
    • 2
  1. 1.Departamento de Matemáticas Facultad de CienciasUniversidad de ZaragozaZaragozaSpain
  2. 2.Department of Theoretical MathematicsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations