Kolmogorov’s Theorems in Fourier Analysis

  • Alexander Olevskiǐ
Conference paper
Part of the Operator Theory Advances and Applications book series (OT, volume 77)


Even if we restrict ourselves to one area of analysis, it is impossible to comprehend the richness and variety of Kolmogorov’s contribution in one lecture. There is too much to remember!


Fourier Series Character System Weak Type Lebesgue Constant Dirichlet Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [K1]
    A. Kolmogorov, Une série de Fourier-Lebesgue divergente presque partout. Fund. Math., 1923, vol. 4, pp. 324–328.Google Scholar
  2. [K2]
    A. Kolmogorov, Sur l’ordre de grandeur des coefficients de la série de Fourier-Lebesgue. Bull. Acad. Pol. Sci. A, 1923, pp. 83–89.Google Scholar
  3. [K3]
    A. Kolmogorov, G. Seliverstov, Sur la convergence des séries de Fourier. C.R. Acad. Sci. Paris, 1924, vol. 178, pp. 303–306.Google Scholar
  4. [K4]
    A. Kolmogorov, Sur les fonctions harmoniques conjuguées et les séries de Fourier. Fund. Math., 1925, vol. 7, pp. 24–29.Google Scholar
  5. [K5]
    A. Kolmogorov, G. Seliverstov, Sur la convergence des séries de Fourier. Atti Acad. Naz. Lincei. Rend., 1926, vol. 3, pp. 307–310.Google Scholar
  6. [K6]
    A. Kolmogorov, Une série de Fourier-Lebesgue divergente partout. C.R. Acad. Sci. Paris, 1926, vol. 183, pp. 1327–1329.Google Scholar
  7. [K7]
    A. Kolmogorov, D. Menshov, Sur la convergence des séries de fonctions orthogonales, Math. Ztskhr. 1927, Bd. 26, pp. 432–441.Google Scholar
  8. [A]
    G. Alexits, Convergence Problems of Orthogonal Series, Pergamon Press, Inc., NY, 1961.zbMATHGoogle Scholar
  9. [Ba]
    N. Bary, A Treatise on Trigonometric Series, Vols. 1 and 2, Pergamon Press, Inc., NY, 1964.Google Scholar
  10. [BFM]
    C. Boldrighini, S. Frigio, S. Molchanov, Divergent Fourier series: Numerical experiments, Acta Appl. Math., 1991, vol. 23, pp. 261–273.MathSciNetzbMATHGoogle Scholar
  11. [Boc]
    S. Bǒckarev, A Fourier series in an arbitrary bounded orthonormal system that diverges on a set of positive measure. Math. URRS-Sborn., 1975, vol. 27, pp. 393–405.CrossRefGoogle Scholar
  12. [Brg]
    J. Bourgain, On Kolmogorov’s rearrangement problem for orthogonal systems and Garsia’s conjecture. Lecture Notes in Mathematics, 1376, 1987/88, pp. 209–250.Google Scholar
  13. [Bür]
    D. Bürkholder, A sharp inequality for martingale transforms. Ann. Prob., 1979, vol. 7, pp. 858–863.CrossRefGoogle Scholar
  14. [Ca]
    L. Carleson, On convergence and growth of partial sums of Fourier series. Acta Math., 1966, vol. 116, pp. 135–157.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [Co]
    P. Cohen, On a conjecture of Littlewood and idempotent measures. Amer. J. Math., 1960, vol. 82, pp. 191–212.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [E]
    R.E. Edwards, Fourier Series. A Modern Introduction, Vols. 1 and 2, Springer, 1979.Google Scholar
  17. [Ga]
    A. Garsia, Topics in almost everywhere convergence, Chicago, “Mazkham”, 1970.zbMATHGoogle Scholar
  18. [Ge1]
    R. Getsadze, On the divergence in measure of multiple Fourier series. Problems of Function Theory and Functional Analysis, 1988, vol. 4, pp. 76–83, Tbilisi.Google Scholar
  19. [Ge2]
    R. Getsadze, On multiple systems of convergence. Problems of Funtion Theory and Functional Analysis, 1986, vol. 3, pp. 66–83, Tbilisi.Google Scholar
  20. [Fe1]
    C. Fefferman, On the divergence of multiple Fourier series, Bull. AMS, 1971, vol. 77, pp. 191–195.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [Fe2]
    C. Fefferman, The multiplier problem for the ball. Ann of Math., 1971, vol. 94, pp. 330–336.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [H]
    H. Helson, Harmonic Analysis, Addison-Wesley P.C., 1983.zbMATHGoogle Scholar
  23. [Hu]
    R. Hunt, On the convergence of Fourier series, orthogonal expansions and their continuous analagous. Southern Ellinois University Press, 1968, pp. 235–256.Google Scholar
  24. [Ka]
    J.-P. Kahane, Some Random Series of Functions, 2nd edition, Cambridge University Press, 1985.zbMATHGoogle Scholar
  25. [Kaz]
    K. Kazarjan, On some questions in the theory of orthogonal series. Mathematics USSR-Sbornik, 1984, vol. 47, pp. 269–286.CrossRefGoogle Scholar
  26. [KaS]
    B. Kashin, A. Saakjan, Orthogonal Series, “Nauka”, 1984.zbMATHGoogle Scholar
  27. [KS]
    S. Kaszmarz, H. Steinhaus, Theorie der Orthogonalreihen, Chelsee Publishing Company, NY, 1951.Google Scholar
  28. [Ktz]
    Y. Katznelson. An Introduction to Harmonic Analysis, 2nd edition, NY., Dover, 1976.zbMATHGoogle Scholar
  29. [Ko]
    S. Konjagin, Divergence in measure of multiple Fourier series. Math. Notes, 1988, vol. 44, pp. 589–592.MathSciNetGoogle Scholar
  30. [Kör]
    T. Körner, Sets of divergence for Fourier series, Bull. London Math. Soc., 1971, vol. 3, pp. 152–154.MathSciNetzbMATHCrossRefGoogle Scholar
  31. [M]
    J. Marcinkiewicz, Sur l’ interpolations d’opérations. C.R. Acad. Sci. Paris, 1939, vol. 208, pp. 1272–1273.Google Scholar
  32. [Mau]
    B. Maurey, Théorèmes de factorisation pour des opérateurs linéaires à valeurs dans les espaces L p . Astérisque, vol. 11, 1974.Google Scholar
  33. [Ni]
    E. Nikishin, Resonance theorems and superlinear operators. Russian Math. Surveys, 1970, vol. 25, no. 6, pp. 125–187.zbMATHCrossRefGoogle Scholar
  34. [Ol1]
    A. Olevskiǐ, Divergent Fourier series for continuous functions, Soviet Math. Dokl., 1961, vol. 2, pp. 1382–1386.Google Scholar
  35. [Ol2]
    A. Olevskiǐ, Complete systems of convergence. Soviet Math. Dokl., 1964, vol. 5, pp. 1425–1429.Google Scholar
  36. [Ol3]
    A. Olevskiǐ, Fourier series of continuous functions with respect to bounded orthonormal systems. Izv. Acad. Nauk SSSR, Math., 1966, vol. 30, pp. 387–432.Google Scholar
  37. [Ol4]
    A. Olevskiǐ, Fourier Series with Respect to General Orthogonal Systems. Ergebnisse der Mathematik and ihrer Grenzgebiete, Bd. 86, Springer, 1975.Google Scholar
  38. [Pr]
    V. Prochorenko, Divergent Fourier series. Math. USSR-Sbornik, 1968, vol. 4, pp. 167–180.CrossRefGoogle Scholar
  39. [R]
    M. Riesz, Sur les fonctions conjuguées. Math. Ztschr., 1928, vol. 27, pp. 218–244.MathSciNetCrossRefGoogle Scholar
  40. [Sa]
    S. Sawyer, Maximal inequalities of weak type. Ann. of Math., 1966, vol. 84, pp. 157–173.MathSciNetzbMATHCrossRefGoogle Scholar
  41. [Sj1]
    P. Sjölin, An inequality of Paley and convergence a.e. of Walch-Fourier series. Ark. för Mat., 1969, vol. 7, pp. 551–570.zbMATHCrossRefGoogle Scholar
  42. [Sj2]
    P. Sjölin, Convergence almost everywhere of certain singular integrals and multiple Fourier series. Ark. för Mat., 1971, vol. 9, pp. 65–90.zbMATHCrossRefGoogle Scholar
  43. [St]
    E. Stein, On limits of sequences of operators. Ann. of Math., 1961, vol. 74, pp. 140–170.MathSciNetzbMATHCrossRefGoogle Scholar
  44. [Ul1]
    P. Uljanov, Divergent Fourier series. Russian Math. Surveys, 1961, vol. 16.Google Scholar
  45. [Ul2]
    P. Uljanov, A.N. Kolmogorov and divergent Fourier Series, Russian Math. Surveys, 1983, vol. 38.Google Scholar
  46. [Za]
    Z. Zahorski, Une série Fourier permutée d’une fonction de classe L 2 divergente presque partout. C.R. Acad. Sci. Paris, 1960, vol. 251, pp. 501–503.MathSciNetzbMATHGoogle Scholar
  47. [Ze]
    K. Zeller, Über Konvergenzmengen von Fourierreihen. Arch. Math., 1955, Bd. 6, pp. 335–340.MathSciNetzbMATHCrossRefGoogle Scholar
  48. [Zy]
    A. Zygmund, Trigonometric Series, 2 vols., 2nd ed., Cambridge: Cambridge University Press, 1959.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1995

Authors and Affiliations

  • Alexander Olevskiǐ
    • 1
  1. 1.School of Mathematical Sciences Sackler Faculty of Exact SciencesTel Aviv UniversityTel AvivIsrael

Personalised recommendations