Advertisement

On the Richness of the Set of p’s in Krivine’s Theorem

  • E. Odell
  • Th. Schlumprecht
Part of the Operator Theory Advances and Applications book series (OT, volume 77)

Abstract

We give examples of two Banach spaces. One Banach space has no spreading model which contains p (1 ≤ p < ∞) or c o. The other space has an unconditional basis for which p (1 ≥ p < ∞) and c o are block finitely represented in all block bases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BL]
    B. Beauzamy and J.-T. Lapresté, Modèles étalés des espaces de Banach, In “Travaux en Cours”, Hermann, Paris, 1984.Google Scholar
  2. [BS1]
    A. Brunel and L. Sucheston, On J-convexity and some ergodic superproperties of Banach spaces, Trans. Amer. Math. Soc. 204 (1975), 79–90.MathSciNetzbMATHGoogle Scholar
  3. [BS2]
    A. Brunel and L. Sucheston, On B-convex Banach spaces, Math. Systems Th. 7 (1974), 294–299.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [CS]
    P.G. Casazza and T.J. Shura, Tsirelson’s Space, In “Lecture Notes in Mathematics” 1363, Springer-Verlag, 1989.Google Scholar
  5. [FJ]
    T. Figiel and W.B. Johnson, A uniformly convex Banach space which contains no l p, Comp. Math. 29 (1974), 179–190.MathSciNetzbMATHGoogle Scholar
  6. [G]
    W.T. Gowers, A space not containing c o, 1 or a reflexive subspace, preprint.Google Scholar
  7. [GM]
    W.T. Gowers and B. Maurey, The unconditional basic sequence problem, Journal of AMS 6 (1993), 851–874.MathSciNetzbMATHGoogle Scholar
  8. [J]
    R.C. James, Uniformly nonsquare Banach spaces, Ann. of Math. 80 (1964), 542–550.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [K]
    J.L. Krivine, Sous espaces de dimension finie des espaces de Banach réticulés, Ann. of Math. 104 (1976), 1–29.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [L]
    H. Lemberg, Nouvelle démonstration d’un théorème de J.L. Krivine sur la finie représentation de p dans un espace de Banach, Israel J. Math. 39 (1981), 341–348.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [LT]
    J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, I, Springer-Verlag, New York, 1977.zbMATHGoogle Scholar
  12. [MS]
    V. Milman and G. Schechtmann, Asymptotic theory of finite dimensional normed spaces, In “Lecture Notes in Mathematics” 1200, Springer-Verlag, New York, 1986.Google Scholar
  13. [O]
    E. Odell, Applications of Ramsey theory to Banach space theory, In “Notes in Banach Spaces” (H.E. Lacey, ed.), Univ. of Texas Press, 1980, 379–404.Google Scholar
  14. [R]
    H. Rosenthal, On a theorem of Krivine concerning block finite representability of p in general Banach spaces, J. Fune. Anal. 28 (1978), 197–225.zbMATHCrossRefGoogle Scholar
  15. [S1]
    Th. Schlumprecht, An arbitrarily distortable Banach space, Israel J. Math. 76 (1991), 81–95.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [S2]
    Th. Schlumprecht, A complementably minimal Banach space not containing c o or p, In “Seminar Notes in Functional Analysis and PDE’s”, Louisiana State University (1991–1992), 169–181.Google Scholar
  17. [T]
    B.S. Tsirelson, Not every Banach space contains p or c o, Funct. Anal. Appi. 8 (1974), 138–141.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1995

Authors and Affiliations

  • E. Odell
    • 1
  • Th. Schlumprecht
    • 2
  1. 1.Department of MathematicsThe University of Texas at AustinAustinUSA
  2. 2.Department of MathematicsTexas A&M UniversityCollege StationUSA

Personalised recommendations