Advertisement

A Remark about Distortion

  • Bernard Maurey
Part of the Operator Theory Advances and Applications book series (OT, volume 77)

Abstract

In this note we show that every Banach space X not containing l 1 n uniformly and with unconditional basis contains an arbitrarily distortable subspace.

Keywords

Banach Space Banach Lattice Equivalent Norm Convex Banach Space Unconditional Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [CS]
    P.G. Casazza, T.J. Shura, Tsirelson’s space, Lecture Notes in Math. vol. 1363 (1989).Google Scholar
  2. [G]
    W.T. Gowers, A new dichotomy for Banach spaces, preprint.Google Scholar
  3. [GM]
    W.T. Gowers, B. Maurey, The unconditional basic sequence problem, Journal of AMS, 6 (1993), 851–874.MathSciNetzbMATHGoogle Scholar
  4. [J]
    R.C. James, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542–550.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [K]
    J.L. Krivine, Sous-espaces de dimension finie des espaces de Banach réticulés, Ann. of Math. 104 (1976), 1–29.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [LT1]
    J. Lindenstrauss, L. Tzafriri, Classical Banach spaces I: sequence spaces, Springer Verlag, 1977.zbMATHGoogle Scholar
  7. [LT2]
    J. Lindenstrauss, L. Tzafriri, Classical Banach spaces II: function spaces, Springer Verlag, 1979.zbMATHGoogle Scholar
  8. [Ml]
    V.D. Milman, Spectrum of continuous bounded functions on the unit sphere of a Banach space, Funct. Anal, and Appl. 3 (1969), 67–79 (translated from Russian).MathSciNetGoogle Scholar
  9. [M2]
    V.D. Milman, The geometric theory of Banach spaces, part II: Geometry of the unit sphere, Uspekhi Math. Nauk 26 (1971), 73–149. English translation in Russian Math. Surveys 26 (1971), 79–163.MathSciNetGoogle Scholar
  10. [MT]
    V.D. Milman, N. Tomczak-Jaegermann, Asymptotic l p spaces and bounded distortions, in “Banach Spaces” (ed. W.B. Johnson, B.-L. Lin), Proc. of Merida Workshop, January 1992, Contemp. Math. 144 (1993) 173–195.Google Scholar
  11. [OS]
    E. Odell, T. Schlumprecht, The distortion problem, preprint.Google Scholar
  12. [S]
    T. Schlumprecht, An arbitrarily distortable Banach space, Israel J. Math. 76 (1991), 81–95.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [T]
    B.S. Tsirelson, Not every Banach space contains l p or c O, Punct. Anal. Appl. 8 (1974), 138–141 (translated from Russian).CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1995

Authors and Affiliations

  • Bernard Maurey
    • 1
  1. 1.Equipe d’Analyse et Mathématiques AppliquéesUniversité de Marne la ValléeNoisy Le Grand CedexFrance

Personalised recommendations