Skip to main content

Abstract

Harmonic maps are nonlinear analogues of harmonic functions or, if one considers their differentials, harmonic 1-forms. As such, one can expect analogues of Hodge-theoretic results about harmonic 1-forms. Harmonic maps arise as critical points for the energy functional on maps between two Riemannian manifolds. If M, N are Riemannian manifolds and f : MN is a smooth map between them, then the energy is defined by

$$E(f) = {\smallint _M}{\left| {df} \right|^2}$$

where df is the differential of f. If f has finite energy, then we can ask whether f is a critical point for E; the corresponding Euler-Lagrange equation in D* df = 0, where D is the exterior derivative operator associated to the natural connection of f*TN and df is regarded as a 1-form on M with values in f*TN. The latter is the harmonic map equation. It is nonlinear analogue of Laplace’s equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Bloch, Applications of the dilogarithm function in algebraic K-theory and al-gebraic geometry, Proc. of the Int. Symp. in Algebraic Geometry, Kyoto 1977, M. Nagata, ed., Kinokuniya, Tokyo, 103–114.

    Google Scholar 

  2. K. Corlette, Archimedean superrigidity and hyperbolic geometry, Ann. of Math. (1) 135 (1992), 165–182.

    Article  MathSciNet  Google Scholar 

  3. K. Corlette, Flat G-bundles with canonical metrics, J. Differential Geom. 28 (1988), 361–382.

    Article  MathSciNet  Google Scholar 

  4. K. Corlette and R. Zimmer, Superrigidity for cocycles and hyperbolic geometry, Internat. J. Math. 5 (1994), 273–290.

    Article  MathSciNet  Google Scholar 

  5. K. Diederich and T. Ohsawa, Harmonic mappings and disc bundles over compact Kähler manifolds, Publ. Res. Inst. Math. Sci. 21 (1985), 819–833.

    Article  MathSciNet  Google Scholar 

  6. S. K. Donaldson, Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc. 55 (1987), 127–131.

    Article  MathSciNet  Google Scholar 

  7. J. Eells and J. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109–160.

    Article  MathSciNet  Google Scholar 

  8. M. Gromov, Foliated plateau problem II: Harmonic maps of foliations, GAFA 1 (1991), 253–320.

    MathSciNet  MATH  Google Scholar 

  9. M. Gromov and R. Schoen, Harmonic maps into singular spaces and p-adic super-rigidity for lattices in qroups of rank one, Publ. Math. IHES 76 (1992), 165–246.

    Article  Google Scholar 

  10. L. Hernandez, Kahler manifolds and i-pinching, Duke Math. J. 62 (1991), 601–611.

    Article  MathSciNet  Google Scholar 

  11. [JY1] J. Jost and S. T. Yau, Harmonic maps and group representations, Differential Geometry, H. B. Lawson and K. Tenenblat, eds., Longman, 241–259.

    Google Scholar 

  12. J. Jost and S. T. Yau, Harmonic maps and superrigidity, Differential Geometry: Partial Differential Equations on Manifolds, Proc. Sympos. Pure Math. 54, part 1 (1993), 245–280.

    MathSciNet  MATH  Google Scholar 

  13. F. Labourie, Existence d’applications harmoniques tordues a valeurs dans les variétés a courbure negative, Proc. Amer. Math. Soc. 111 (1991), 877–882.

    MathSciNet  MATH  Google Scholar 

  14. G. Margulis, Discrete Subgroups of Semisimple Lie Groups, Springer-Verlag, Berlin and New York, 1991.

    Book  Google Scholar 

  15. N. Mok, Y.-T. Siu, and S. K. Yeung, Geometric superrigidity, Invent. Math. 113 (1993), 57–83.

    Article  MathSciNet  Google Scholar 

  16. A. Reznikov, All regulators of flat bundles are torsion, Hebrew University preprint (1993).

    Google Scholar 

  17. J. Sampson, Applications of harmonic maps to Kahler geometry, Cont. Math. 49 (1986), 125–133.

    Article  Google Scholar 

  18. C. T. Simpson, Nonabelian Hodge Theory, Proc. Internat. Congr. Math., Kyoto 1990, V. I, Math. Soc. of Japan, Springer-Verlag, 1991.

    Google Scholar 

  19. Y.-T. Siu, The complex-analyticity of harmonic maps and the strong rigidity of compact Kahler manifolds, Ann. of Math. 112 (1980), 73–112.

    Article  MathSciNet  Google Scholar 

  20. S. T. Yau and F. Zheng, Negatively 4-pinched Riemannian metric on a compact Kdhler manifold, Invent. Math. 103 (1991), 522–535.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäser Verlag, Basel, Switzerland

About this paper

Cite this paper

Corlette, K. (1995). Harmonic Maps, Rigidity, and Hodge Theory. In: Chatterji, S.D. (eds) Proceedings of the International Congress of Mathematicians. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-9078-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9078-6_39

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9897-3

  • Online ISBN: 978-3-0348-9078-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics