Skip to main content

The Role of Smooth Numbers in Number Theoretic Algorithms

  • Conference paper
Proceedings of the International Congress of Mathematicians

Abstract

A smooth number is a number with only small prime factors. In particular, a positive integer is y-smooth if it has no prime factor exceeding y. Smooth numbers are a useful tool in number theory because they not only have a simple multiplicative structure, but are also fairly numerous. These twin properties of smooth numbers are the main reason they play a key role in almost every moder integer factorization algorithm. Smooth numbers play a similar essential role in discrete logarithm algorithms (methods to represent some group element as a power of another), and a lesser, but still important, role in primality tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. M. Adleman, The function field sieve, in: Algorithmic Number Theory (L. M. Adleman and M.-D. Huang, eds.), Lecture Notes in Comput. Sci. 877, SpringerVerlag, Berlin, 1994, 108–121.

    Chapter  Google Scholar 

  2. L. M. Adleman and M.-D. Huang, Primality testing and abelian varieties over finite fields, Lecture Notes in Math. 1512, Springer-Verlag, Berlin and New York, 1992.

    Google Scholar 

  3. L. M. Adleman, C. Pomerance, and R. S. Rumely, On distinguishing prime numbers from composite numbers, Ann. of Math. (2) 117 (1983), 173–206.

    Article  MathSciNet  Google Scholar 

  4. W. R. Alford, A. Granville, and C. Pomerance, There are infinitely many Carmichael numbers, Ann. of Math. (2) 140 (1994), 703–722.

    Article  MathSciNet  Google Scholar 

  5. A. O. L. Atkin and F. Morain, Elliptic curves and primality proving, Math. Comp. 61 (1993), 29–68.

    Article  MathSciNet  Google Scholar 

  6. W. Bosma and M.-P. van der Hulst, Primality proving with cyclotomy, Ph.D. dissertation at the University of Amsterdam, Amsterdam, The Netherlands, 1990.

    Google Scholar 

  7. J. P. Buhler, H. W. Lenstra, Jr., and C. Pomerance, Factoring integers with the number field sieve, in [LL], 50–94.

    Google Scholar 

  8. E. R. Canfield, P. Erdos, and C. Pomerance, On a problem of Oppenheim concerning “factorisatio numerorum”, J. Number Theory 17 (1983), 1–28.

    Article  MathSciNet  Google Scholar 

  9. H. Cohen and H. W. Lenstra, Jr., Primality testing and Jacobi sums, Math. Comp. 42 (1984), 297–330.

    Article  MathSciNet  Google Scholar 

  10. D. Coppersmith, Solving homogeneous linear equations over GF(2) via block Wiedemann algorithm, Math. Comp. 62 (1994), 333–350.

    MathSciNet  MATH  Google Scholar 

  11. S. Goldwasser and J. Kilian, Almost all primes can be quickly certified, Proc. 18th STOC (Berkeley, May 28–30, 1986), ACM, New York, 1986, 316–329

    Google Scholar 

  12. J. Kilian, Uses of Randomness in Algorithms and Protocols, The MIT Press, Cambridge, MA, 1990.

    Google Scholar 

  13. D. Gordon, Discrete logarithms in GF(p) using the number field sieve, SIAM J. Discrete Math. 6 (1993), 124–138.

    Article  MathSciNet  Google Scholar 

  14. A. Hildebrand and G. Tenenbaum, Integers without large prime factors, J. de Théorie des Nombres de Bordeaux 5 (1993), 411–484.

    Article  MathSciNet  Google Scholar 

  15. S. Konyagin and C. Pomerance, On primes recognizable in deterministic polynomial time, in: The Mathematics of Paul Erdös (R. L. Graham and J. Nesetril, eds.), Springer-Verlag, to appear.

    Google Scholar 

  16. B. A. LaMacchia and A. M. Odlyzko, Solving large sparse linear systems over finite fields, in: Advances in Cryptology — CRYPTO 90 (A. J. Menezes and S. A. Vanstone, eds.), Lecture Notes in Comput. Sci. 537, Springer-Verlag, Berlin and New York, 1991, 109–133.

    Chapter  Google Scholar 

  17. A. K. Lenstra and H. W. Lenstra, Jr. (eds.), The development of the number field sieve, Lecture Notes in Math. 1554, Springer-Verlag, Berlin and New York, 1993.

    MATH  Google Scholar 

  18. H. W. Lenstra, Jr., Factoring integers with elliptic curves, Ann. of Math. (2) 126 (1987), 649–673.

    Article  MathSciNet  Google Scholar 

  19. H. W. Lenstra, Jr., Elliptic curves and number theoretic algorithms, in: Proc. Int’l Cong. Math., Berkeley, CA, 1986, vol. 1 (A. M. Gleason, ed.), Amer. Math. Soc., Providence, RI, 1987, 99–120.

    Google Scholar 

  20. H. W. Lenstra, Jr., J. Pila, and C. Pomerance, A hyperelliptic smoothness test, I, in [V], 397–408.

    Google Scholar 

  21. H. W. Lenstra, Jr., and C. Pomerance, A rigorous time bound for factoring integers, J. Amer. Math. Soc. 5 (1992), 483–516.

    Article  MathSciNet  Google Scholar 

  22. R. Lovorn, Rigorous, subexponential algorithms for discrete logarithms over finite fields, Ph.D. dissertation at The University of Georgia, Athens, GA, 1992.

    Google Scholar 

  23. R. Lovorn Bender, Rigorous, subexponential algorithms for discrete logarithms in GF(p 2 ), SIAM J. Discrete Math., to appear.

    Google Scholar 

  24. P. L. Montgomery, A block Lanczos algorithm for finding dependencies over GF(2), in: Advances in Cryptology — EUROCRYPT 95 (L. C. Guillon and J.-J. Quisquater, eds.), Lecture Notes in Comput. Sci. 921, Springer-Verlag, Berlin, 1995, 106–120.

    Chapter  Google Scholar 

  25. M. Morrison and J. Brillhart, A method of factoring and the factorization of F7, Math. Comp. 29 (1975), 183–205.

    MathSciNet  MATH  Google Scholar 

  26. A. M. Odlyzko, Discrete logarithms in finite fields and their cryptographic significance, in: Advances in Cryptology Proceedings of EUROCRYPT 84 (T. Beth et al., eds.), Lecture Notes in Comput. Sci. 209, Springer-Verlag, Berlin and New York, 1985, 224–314.

    Google Scholar 

  27. C. Pomerance, Analysis and comparison of some integer factoring algorithms, in: Computational Methods in Number Theory (H. W. Lenstra, Jr. and R. Tijdeman, eds.), Math. Centre Tracts 154/155, Mathematisch Centrum, Amsterdam, 1982, 89–139.

    Google Scholar 

  28. C. Pomerance, The quadratic sieve factoring algorithm, in: Advances in Cryptology — Proceedings of EUROCRYPT 84 (T. Beth et al., eds.), Lecture Notes in Comput. Sci. 209, Springer-Verlag, Berlin and New York, 1985, 169–182.

    Google Scholar 

  29. C. Pomerance, Fast, rigorous factorization and discrete logarithm algorithms, in: Discrete Algorithms and Complexity (D. S. Johnson et al., eds.), Academic Press, Orlando, FL, and New York, 1987, 119–143.

    Chapter  Google Scholar 

  30. C. Pomerance, The number field sieve, in: Mathematics of Computation 1943–1993: A Half-Century of Computational Mathematics (W. Gautschi, ed.), Proc. Sympos. Appl. Math. 48, Amer. Math. Soc., Providence, 1994, 465–480.

    Chapter  Google Scholar 

  31. C. Pomerance and J. W. Smith, Reduction of huge, sparse matrices over a finite field via created catastrophes, Experimental Math. 1 (1992), 90–94.

    Article  MathSciNet  Google Scholar 

  32. O. Schirokauer, Discrete logarithms and local units, in [V], 409–423.

    Article  MathSciNet  Google Scholar 

  33. K. Soundararajan, Asymptotic formulae for the counting function of smooth polynomials, J. London Math. Soc., to appear.

    Google Scholar 

  34. R. C. Vaughan, ed., Theory and applications of numbers without large prime factors, Philos. Trans. Roy. Soc. London 345 (15 November 1993), 327–423.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäser Verlag, Basel, Switzerland

About this paper

Cite this paper

Pomerance, C. (1995). The Role of Smooth Numbers in Number Theoretic Algorithms. In: Chatterji, S.D. (eds) Proceedings of the International Congress of Mathematicians. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-9078-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9078-6_34

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9897-3

  • Online ISBN: 978-3-0348-9078-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics