Skip to main content

Abstract

Let G be a reductive group over ℂ and let W be a finite-dimensional representation of W. Set R = SW, the symmetric algebra of W. Then it follows from the famous Hochster-Roberts theorem [7] that RG is Cohen-Macaulay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Altman and S. Kleiman, Introduction to Grothendieck duality, Lecture Notes in Math., 146, Springer-Verlag, Berlin and New York, 1970.

    Google Scholar 

  2. J. F. Boutot, Singularités rationelles et quotients par les groupes réductifs, Invent. Math. 88 (1987), 65–68.

    Article  MathSciNet  Google Scholar 

  3. M. Brion, Sur les modules de covariants, to appear in Ann. Sci. Ecole Norm. Sup. (4).

    Google Scholar 

  4. B. Broer, On the generating functions associated to a system of binary forms, Indag. Math., (New Ser.) 1 (1990), no. 1, 15–25.

    Article  MathSciNet  Google Scholar 

  5. M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2) 96 (1972), 318–337.

    Article  MathSciNet  Google Scholar 

  6. M. Hochster and C. Huneke, Tight closure, invariant theory and the Briancon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), 31–116.

    MathSciNet  MATH  Google Scholar 

  7. M. Hochster and J. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Adv. in Math. 13 (1974), 115–175.

    Article  MathSciNet  Google Scholar 

  8. G. Kempf, Instability in invariant theory, Ann. of Math. (2) 108 (1978), 299.

    Article  MathSciNet  Google Scholar 

  9. ——, The Hochster-Roberts theorem in invariant theory, Michigan Math. J. 26 (1979), 19–32.

    Google Scholar 

  10. F. Knop, Der kanonische Modul eines Invariantenrings, J. Algebra 127 (1989), 40–54.

    Article  MathSciNet  Google Scholar 

  11. ——, Die Cohen-Macaulay-Eigenschaft von Invariantenringen, unpublished, 1990.

    Google Scholar 

  12. V. L. Popov, Groups, generators, syzygies and orbit in invariant theory, Transl. Math. Monographs, vol. 100, Amer. Math. Soc., Providence, RI, 1993.

    Google Scholar 

  13. C. Procesi, Invariant theory of n x n-matrices, Adv. in Math. 19 (1976), 306–381.

    Article  MathSciNet  Google Scholar 

  14. R. P. Stanley, Combinatorial reciprocity theorems, Adv. in Math. 14 (1974), 194–253.

    Article  MathSciNet  Google Scholar 

  15. ——, Combinatorics and invariant theory, Proc. Sympos. Pure Math. 34 (1979), 345–355.

    Article  MathSciNet  Google Scholar 

  16. ——, Linear diophantine equations and local cohomology, Invent. Math. 68 (1982), 175–193.

    Article  MathSciNet  Google Scholar 

  17. M. Van den Bergh, A converse to Stanley’s conjecture for S12, to appear in Proc. Amer. Math. Soc.

    Google Scholar 

  18. M. Van den Bergh, Cohen-Macaulayness of modules of covariants, Invent. Math. 106 (1991), 389–409.

    Article  MathSciNet  Google Scholar 

  19. ——, Cohen-Macaulayness of semi-invariants for tori, Trans. Amer. Math. Soc. 336 (1993), no. 2, 557–580.

    Article  MathSciNet  Google Scholar 

  20. ——, Local cohomology of modules of covariants, to appear, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäser Verlag, Basel, Switzerland

About this paper

Cite this paper

Van den Bergh, M. (1995). Modules of Covariants. In: Chatterji, S.D. (eds) Proceedings of the International Congress of Mathematicians. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-9078-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9078-6_29

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9897-3

  • Online ISBN: 978-3-0348-9078-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics