Skip to main content

Interactions Between Ergodic Theory, Lie Groups, and Number Theory

  • Conference paper
Proceedings of the International Congress of Mathematicians

Abstract

In this paper we discuss the use of dynamical and ergodic-theoretic ideas and methods to solve some long-standing problems originating from Lie groups and number theory. These problems arise from looking at actions of Lie groups on their homogeneous spaces. Such actions, viewed as dynamical systems, have long been interesting and rich objects of ergodic theory and geometry. Since the 1930s ergodic-theoretic methods have been applied to the study of geodesic and horocycle flows on unit tangent bundlesof compact surfaces of negative curvature. From the algebraic point of view the latter flows are examples of semisimple and unipotent actions on finite-volume homogeneous spaces of real Lie groups. It was established in the 1960s through the fundamental work of D. Ornstein that typical semisimple actions are all statistically the same due to their extremal randomness caused by exponential instability of orbits. Their algebraic nature has little to do with the isomorphism problem for such actions: they are measure-theoretically isomorphic as long as their entropies coincide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Auslander, L. Green, and F. Hahn, Flows on homogeneous spaces, Ann. of Math. Stud. 53 (1963), Princeton Univ. Press, Princeton, NJ.

    Google Scholar 

  2. F. Bien and A. Borel, Sous-groupes dpimorphiques de groupes algdbriques linéaires I, C.R. Acad. Sci. Paris 315 (1992).

    Google Scholar 

  3. A. Borel, Values of indefinite quadratic forms at integral points and flows on spaces of lattices, Bull. Amer. Math. Soc. 32 (1995), 184–204.

    Article  MathSciNet  Google Scholar 

  4. A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. (2) 75 (1962), 485–535.

    Article  MathSciNet  Google Scholar 

  5. A. Borel and G. Prasad, Values of isotropic quadratic forms at S-integral points, Compositio Math. 83 (1992), 347–372.

    MathSciNet  MATH  Google Scholar 

  6. R. Bowen, Weak mixing and unique ergodicity on homogeneous spaces, Israel J. Math. 23 (1976), 267–273.

    Article  MathSciNet  Google Scholar 

  7. S. G. Dani, Invariant measures and minimal sets of horospherical flows, Invent. Math. 64 (1981), 357–385.

    Article  MathSciNet  Google Scholar 

  8. ——, On orbits of unipotent flows on homogeneous spaces, II, Ergodic Theory Dynamical Systems 6 (1986), 167–182.

    MathSciNet  MATH  Google Scholar 

  9. ——, Orbits of horospherical flows, Duke Math. J. 53 (1986), 177–188.

    Article  MathSciNet  Google Scholar 

  10. S. G. Dani and G. A. Margulis, Values of quadratic forms at primitive integral points, Invent. Math. 98 (1989), 405–425.

    Article  MathSciNet  Google Scholar 

  11. ——, Orbit closures of generic unipotent flows on homogeneous spaces of SL(3,ℝ), Math. Ann. 286 (1990), 101–128.

    Article  MathSciNet  Google Scholar 

  12. ——, Values of quadratic forms at integral points: An elementary approach, L’enseig. Math. 36 (1990), 143–174.

    MathSciNet  MATH  Google Scholar 

  13. ——, Limit distributions of orbits of unipotent flows and values of quadratic forms, Adv. in Sov. Math. 16 (1993), 91–137.

    MathSciNet  MATH  Google Scholar 

  14. S. G. Dani and J. Smillie, Uniform distribution of horocycle orbits for Fuchsian groups, Duke Math. J. 5 (1984), 185–194.

    Article  MathSciNet  Google Scholar 

  15. W. Duke, Z. Rudnick, and P. Sarnak, Density of integer points on affine homoqeneous varieties, Duke Math. J. 71 (1993), 143–180.

    Article  MathSciNet  Google Scholar 

  16. R. Ellis and W. Perrizo, Unique ergodicity of flows on homogeneous spaces, Israel J. Math. 29 (1978), 276–284.

    Article  MathSciNet  Google Scholar 

  17. A. Eskin and C. McMullen, Mixing, counting and equidistribution in Lie groups, Duke Math. J. 71 (1993), 181–209.

    Article  MathSciNet  Google Scholar 

  18. A. Eskin, S. Mozes, and N. Shah, Unipotent flows and counting lattice points on homogeneous varieties, to appear in Ann. of Math.

    Google Scholar 

  19. J. Feldman and D. Ornstein, Semirigidity of horocycle flows over compact surfaces of variable negative curvature, Ergodic Theory Dynamical Systems 7 (1987), 49–72.

    Article  MathSciNet  Google Scholar 

  20. L. Flaminio, An extension of Ratner’s rigidity theorem to n-dimensional hyperbolic space, Ergodic Theory Dynamical Systems 7 (1987), 73–92.

    Article  MathSciNet  Google Scholar 

  21. L. Flaminio and R. Spatzier, Geometrically finite groups, Patherson-Sullivan measures and Ratner’s rigidity theorem, Invent. Math. 99 (1990), 601–626.

    Article  MathSciNet  Google Scholar 

  22. H. Furstenberg, Strict ergodicity and transformations of the torus, Amer. J. Math. 83 (1961), 573–601.

    Article  MathSciNet  Google Scholar 

  23. ——, The unique ergodicity of the horocycle flow, in Recent Advances in Topological Dynamics, Lecture Notes in Math. 318, Springer-Verlag, Berlin and New York (1972), 95–115.

    Google Scholar 

  24. G.A. Hedlund, Fuchsian groups and transitive horocycles, Duke Math. J. 2 (1936), 530–542.

    Article  MathSciNet  Google Scholar 

  25. E. Lesigne, Theoremes ergodiques pour une translation sur nilvariété, Ergodic Theory Dynamical Systems 9 (1989), 115–126.

    Article  MathSciNet  Google Scholar 

  26. B. Marcus, The horocycle flow is mixing of all degrees, Invent. Math. 46 (1978), 201–209.

    Article  MathSciNet  Google Scholar 

  27. G. A. Margulis, Discrete subgroups and ergodic theory, in Number Theory, Trace Formula and Discrete Groups, Symposium in honor of A. Selberg, Oslo 1987, Academic Press, New York (1989), 377–398.

    Google Scholar 

  28. ——, Dynamical and ergodic properties of subgroup actions on homogeneous spaces with applications to number theory, Proc. Internat. Congress Math. (1990), Kyoto, 193–215.

    Google Scholar 

  29. G. A. Margulis and G. M. Tomanov, Measure rigidity for algebraic groups over local fields, C. R. Acad. Sci. Paris, t. 315, Série I (1992), 1221–1226.

    MathSciNet  MATH  Google Scholar 

  30. ——, Invariant measures for actions of unipotent groups over local fields on homogeneous spaces, Invent. Math. 116 (1994), 347–392.

    Article  MathSciNet  Google Scholar 

  31. S. Mozes, Mixing of all orders of Lie groups actions, Invent. Math. 107 (1992), 235–241.

    Article  MathSciNet  Google Scholar 

  32. ——, Epimorphic subgroups and invariant measures, Ergodic Theory Dynamical Systems 15 (1995), 1–4.

    MathSciNet  MATH  Google Scholar 

  33. S. Mozes and N. Shah, On the space of ergodic invariant measures of unipotent flows, Ergodic Theory Dynamical Systems 15 (1995), 149–159.

    MathSciNet  MATH  Google Scholar 

  34. W. Parry, Ergodic properties of affine transformations and flows on nilmanifolds, Amer. J. Math. 91 (1969), 757–771.

    Article  MathSciNet  Google Scholar 

  35. ——, Metric classification of ergodic nilflows and unipotent affines, Amer. J. Math. 93 (1971), 819–828.

    Article  MathSciNet  Google Scholar 

  36. G. Prasad, Ratner’s theorem in S-arithmetic setting, in Workshop on Lie Groups, Ergodic Theory and Geometry, Math. Sci. Res. Inst. Publ. (1992), p. 53.

    Google Scholar 

  37. M. S. Raghunathan, Discrete Subgroups of Lie Groups, Springer-Verlag, Berlin and New York, 1972.

    Book  Google Scholar 

  38. M. Ratner, Horocycle flows are loosely Bernoulli, Israel J. Math. 31 (1978), 122–132.

    Article  MathSciNet  Google Scholar 

  39. ——, The Cartesian square of the horocycle flow is not loosely Bernoulli, Israel J. Math. 34 (1979), 72–96.

    Article  MathSciNet  Google Scholar 

  40. ——, Rigidity of horocycle flows, Ann. of Math. (2) 115 (1982), 597–614.

    Article  MathSciNet  Google Scholar 

  41. ——, Factors of horocycle flows, Ergodic Theory Dynamical Systems 2 (1982), 465–489.

    Article  MathSciNet  Google Scholar 

  42. ——, Horocycle flows: Joinings and rigidity of products, Ann. of Math. (2) 118 (1983), 277–313.

    Article  MathSciNet  Google Scholar 

  43. ——, Ergodic theory in hyperbolic space, Contemp. Math. 26 (1984), 302–334.

    MathSciNet  MATH  Google Scholar 

  44. ——, Rigidity of time changes for horocycle flows, Acta Math. 156 (1986), 1–32.

    Article  MathSciNet  Google Scholar 

  45. ——, Rigid reparametrizations and cohomology for horocycle flows, Invent. Math. 88 (1987), 341–374.

    Article  MathSciNet  Google Scholar 

  46. ——, Strict measure rigidity for unipotent subgroups of solvable groups, Invent. Math. 101 (1990), 449–482.

    Article  MathSciNet  Google Scholar 

  47. ——, On measure rigidity of unipotent subgroups of semisimple groups, Acta Math. 165 (1990), 229–309.

    Article  MathSciNet  Google Scholar 

  48. ——, On Raghunathan’s measure conjecture, Ann. of Math. (2) 134 (1991), 545–607.

    Article  MathSciNet  Google Scholar 

  49. ——, Raghunathan’s topological conjecture and distributions of unipotent flows, Duke Math. J. 63 (1991), 235–280.

    Article  MathSciNet  Google Scholar 

  50. ——, Raghunathan’s conjectures for SL(2,ℝ), Israel J. Math. 80 (1992), 1–31.

    Article  MathSciNet  Google Scholar 

  51. ——, Raghunathan’s conjectures for p-adic Lie groups, International Mathematics Research Notices, no. 5 (1993), 141–146.

    Article  MathSciNet  Google Scholar 

  52. ——, Invariant measures and orbit closures for unipotent actions on homogeneous spaces, Geom. Functional Anal (GAFA) 4 (1994), 236–256.

    Article  MathSciNet  Google Scholar 

  53. ——, Raghunathan’s conjectures for cartesian products of real and p-adic Lie groups, Duke Math. J. 77 (1995), 275–382.

    Article  MathSciNet  Google Scholar 

  54. N. Shah, Uniformly distributed orbits of certain flows on homogeneous spaces, Math. Ann. 289 (1991), 315–334.

    Article  MathSciNet  Google Scholar 

  55. ——, Limit distributions of polynomial trajectories on homogeneous spaces, Duke Math. J. 75 (1994), 711–732.

    Article  MathSciNet  Google Scholar 

  56. A. Starkov, The reduction of the theory of homogeneous flows to the case of discrete isotropy subgroups, Dokl. Akad. Nauk 301 (1988), 1328–1331 (Russian).

    Google Scholar 

  57. ——, Solvable homogeneous flows, Math. USSR-Sb. 62 (1989), 243–260.

    Article  MathSciNet  Google Scholar 

  58. ——, Structure of orbits of homogeneous flows and Raghunathan’s conjecture, Russian Math: Surveys 45 (1990), 227–228.

    Article  MathSciNet  Google Scholar 

  59. ——, On the mixing of all orders for homogeneous flows, Dokl. Akad. Nauk 333 (1993), 442–445 (Russian).

    Google Scholar 

  60. T. Tamagawa, On discrete subgroups of p-adic algebraic groups, in Arithmetic Algebraic Geometry, Shilling, Harper & Row, New York (1965), 11–17.

    Google Scholar 

  61. W. Veech, Unique ergodicity of horospherical flows, Amer. J. Math. 99 (1977), 827–859.

    Article  MathSciNet  Google Scholar 

  62. D. Witte, Rigidity of some translations on homogeneous spaces, Invent. Math. 81 (1985), 1–27.

    Article  MathSciNet  Google Scholar 

  63. ——, Zero entropy affine maps on homogeneous spaces, Amer. J. Math. 109 (1987), 927–961.

    Article  MathSciNet  Google Scholar 

  64. ——, Rigidity of horospherical foliations, Ergodic Theory Dynamical Systems 9 (1989), 191–205.

    Article  MathSciNet  Google Scholar 

  65. ——, Measurable quotients of unipotent translations on homogeneous spaces, Trans. Amer. Math. Soc. 345 (1994), 577–594.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäser Verlag, Basel, Switzerland

About this paper

Cite this paper

Ratner, M. (1995). Interactions Between Ergodic Theory, Lie Groups, and Number Theory. In: Chatterji, S.D. (eds) Proceedings of the International Congress of Mathematicians. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-9078-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9078-6_13

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9897-3

  • Online ISBN: 978-3-0348-9078-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics