Skip to main content

Measurement of low-density lipoprotein oxidation

  • Chapter
Analysis of Free Radicals in Biological Systems

Summary

Oxidative modification of low-density lipoprotein leads to enhanced uptake by macrophages and hence to the formation of atherosclerotic lesions. Low-density lipoprotein oxidizability can be determined in vitro by several methods. We describe here a rapid method for the isolation of low-density lipoprotein by density gradient ultracentrifugation. Cu2+ -catalyzed oxidation of low-density lipoprotein is then performed and the rate of conjugated diene formation is monitored continuously by the change in absorbance at 234 nm. This method provides useful information for the evaluation of individual susceptibility of low-density lipoprotein to oxidation and of the protection afforded by antioxidant molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steinberg, D., Parthasarathy, S., Carew, T.E., Khoo, J.C. and Witztum, J.L. (1989) Beyond cholesterol-Modifications of low-density lipoprotein that increase its atherogenicity. New Engl J. Med. 320: 915–924.

    Article  PubMed  CAS  Google Scholar 

  2. Steinbrecher, U.P., Zhang, H. and Lougheed, M. (1990) Role of oxidatively modified LDL in atherosclerosis. Free Rad. Biol. Med. 9: 155–168.

    Article  PubMed  CAS  Google Scholar 

  3. Witztum, J.L. and Steinberg, D. (1991) Role of oxidized low density lipoprotein in atherogenesis. J. Clin. Invest. 88: 1785–1792.

    Article  PubMed  CAS  Google Scholar 

  4. Krieger, M. (1992) Molecular flypaper and atherosclerosis: Structure of the macrophage scavenger receptor. Trends Biochem. Sci. 17: 141–146.

    Article  PubMed  CAS  Google Scholar 

  5. Salonen, J.T., Ylä-Herttuala, S., Yamamoto, R., Butler, S., Korpela, H., Salonen, R., Nyyssönen, K., Palinski, W. and Witztum, J.L. (1992) Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet 339: 883–887.

    Article  PubMed  CAS  Google Scholar 

  6. Mackness, M.I., Abbott, C. and Durrington, P.N. (1993) The role of high-density lipoprotein and lipid-soluble antioxidant vitamins in inhibiting low-density lipoprotein oxidation. Biochem. J. 294: 829–834.

    PubMed  CAS  Google Scholar 

  7. De Graaf, J., Hak-Lemmers, H.L.M., Hectors, M.P.C., Demacker, P.N.M., Hendriks, J.C.M. and Stalenhoef, A.F.H. (1991) Enhanced susceptibility to in vitro oxidation of the dense low density lipoprotein subfraction in healthy subjects. Arterioscler. Thromb. 11: 298–306.

    Article  PubMed  Google Scholar 

  8. Krauss, R.M. and Burke, D.J. (1982) Identification of multiple subclasses of plasma low density lipoproteins in normal humans. J. Lipid Res. 23: 97–104.

    PubMed  CAS  Google Scholar 

  9. Williams, P.T., Vranizan, K.M. and Krauss, R.M. (1992) Correlations of plasma lipoproteins with LDL subfractions by particle size in men and women. J. Lipid Res. 33: 765–774.

    PubMed  CAS  Google Scholar 

  10. Stafforini, D.M., Prescott, S.M. and McIntyre, T.M. (1987) Human plasma platelet-activating factor acetylhydrolase. Purification and properties. J. Biol. Chem. 262: 4223–4230.

    PubMed  CAS  Google Scholar 

  11. Karabina, S.-A.P., Liapikos, T.A., Grekas, G., Goudevenos, J. and Tselepis, A.D. (1994) Distribution of PAF-acetylhydrolase activity in human plasma low-density lipoprotein subfractions. Biochim. Biophys. Acta 1213: 34–38.

    PubMed  CAS  Google Scholar 

  12. Esterbauer, H., Striegl, G., Puhl, H. and Rotheneder, M. (1989) Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Rad. Res. Comms. 6: 67–75.

    Article  CAS  Google Scholar 

  13. Fong, L.G., Parthasarathy, S., Witztum, J.L. and Steinberg, D. (1987) Non enzymatic oxidative cleavage of peptide bonds in apoprotein B 100. J. Lipid Res. 28: 1466–1477.

    PubMed  CAS  Google Scholar 

  14. Herak, J.N. (1993) Physical changes of low-density lipoprotein on oxidation. Chem. Phys. Lipids 66: 231–234.

    Article  PubMed  CAS  Google Scholar 

  15. Abbey, M., Nestel, P.J. and Baghurst, P.A. (1993) Antioxidant vitamins and low-density lipoprotein oxidation. Am. J. Clin. Nutr. 58: 525–532.

    PubMed  CAS  Google Scholar 

  16. Esterbauer, H., Gebicki, J., Puhl, H. and Jürgens, G. (1992) The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Rad. Biol. Med. 13: 341–390.

    Article  PubMed  CAS  Google Scholar 

  17. Kleinveld, H.A., Hak-Lemmers, H.L.M., Stalenhoef, A.F.H. and Demacker, P.N.M. (1992) Improved measurement of low-density-lipoprotein susceptibility to copper-induced oxidation: application of a short procedure for isolating low-density lipoprotein. Clin. Chem. 10: 2066–2072.

    Google Scholar 

  18. Frei, B. and Gaziano, J.M. (1993) Content of antioxidants, preformed lipid hydroperoxides, and cholesterol as predictors of the susceptibility of human LDL to metal ion-dependent and independent oxidation. J. Lipid Res. 34: 2135–2145.

    PubMed  CAS  Google Scholar 

  19. Thomas, M.J., Thornburg, T., Manning, J., Hooper, K. and Rudel, L.L. (1994) Fatty acid composition of low-density lipoprotein influences its susceptibility to autooxidation. Biochemistry 33: 1828–1834.

    Article  PubMed  CAS  Google Scholar 

  20. Jialal, I. and Grundy, S.M. (1991) Preservation of the endogenous antioxidants in low density lipoprotein by ascorbate but not probucol during oxidative modification. J. Clin. Invest. 87: 597–601.

    Article  PubMed  CAS  Google Scholar 

  21. Kagan, V.E., Serbinova, E.A., Forte, T., Scita, G. and Packer, L. (1992) Recycling of vitamin E in human low density lipoproteins. J. Lipid Res. 33: 385–397.

    PubMed  CAS  Google Scholar 

  22. Lynch, S.M. and Frei, B. (1993) Mechanisms of copper- and iron-dependent oxidative modification of human low density lipoprotein. J. Lipid. Res. 34: 1745–1753.

    PubMed  CAS  Google Scholar 

  23. Sattler, W., Mohr, D. and Stocker, R. (1994) Rapid isolation of lipoproteins and assessment of their peroxidation by high-performance liquid chromatography postcolumn chemiluminescence. Method. Enzymol. 233: 469–489.

    Article  CAS  Google Scholar 

  24. Hallberg, C., Hadén, M., Bergström, M., Hanson, G., Pettersson, K., Westerlund, C, Bondjers, G., Östlund-Lindqvist, A.-M. and Camejo, G. (1994) Lipoprotein fractionation in deuterium oxide gradients: a procedure for evaluation of antioxidant binding and susceptibility to oxidation. J. Lipid Res. 35: 1–9.

    PubMed  CAS  Google Scholar 

  25. Henriksen, T., Mahoney, E.M. and Steinberg, D. (1981) Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: Recognition by receptors for acetylated low density lipoproteins. Proc. Natl. Acad. Sci. USA 78: 6499–6503.

    Article  PubMed  CAS  Google Scholar 

  26. Parthasarathy, S., Steinbrecher, U.P., Barnett, J., Witztum, J.L. and Steinberg, D. (1985) Essential role of phospholipase A2 activity in endothelial cell-induced modification of low density lipoprotein. Proc. Natl Acad. Sci. USA 82: 3000–3004.

    Article  PubMed  CAS  Google Scholar 

  27. Scaccini, C. and Jialal, I. (1994) LDL modification by activated polymorphonuclear leukocytes: a cellular model of mild oxidative stress. Free Rad. Biol. Med. 16: 49–55.

    Article  PubMed  CAS  Google Scholar 

  28. Esterbauer, H., Dieber-Rotheneder, M., Waeg, G., Striegl, G. and Jürgens, G. (1990) Biochemical, structural, and functional properties of oxidized low-density lipoprotein. Chem. Res. Toxicol 3: 77–92.

    Article  PubMed  CAS  Google Scholar 

  29. Steinbrecher, P., Parthasarathy, S., Leake, D., Witztum, J. and Steinberg, D. (1984) Modification of low density lipoprotein phsopholipids. Proc. Natl. Acad. Sci. USA 81: 3883–3887.

    Article  PubMed  CAS  Google Scholar 

  30. Wainer, D.D.M., Burton, G.W., Ingold, K.U. and Locke, S. (1985) Quantitative measurement of the total, peroxyl radical-trapping antioxidant capability of human blood plasma controlled peroxidation. The important contribution made by plasma proteins. FEBS Lett. 187: 33–37.

    Article  Google Scholar 

  31. Wilkins, G.M. and Leake, D.S. (1990) Free radicals and low-density lipoprotein oxidation by macrophages. Biochem. Soc. Trans. 18: 1170–1171.

    PubMed  CAS  Google Scholar 

  32. Puhl, H., Waeg, G. and Esterbauer, H. (1994) Methods to determine oxidation of low-density lipoproteins. Method. Enzymol 233: 425–441.

    Article  CAS  Google Scholar 

  33. Sack, M.N., Rader, D.J. and O’Cannon, R. (1994) Oestrogen and inhibition of oxidation of low-density lipoproteins in postmenopausal women. Lancet 343: 269–270.

    Article  PubMed  CAS  Google Scholar 

  34. Mazière, C., Auclair, M., Ronveaux, M.-F., Salmon, S., Santus, R. and Mazière, J.-C. (1991) Estrogens inhibit copper and cell-mediated modification of low density lipoprotein. Atherosclerosis 89: 175–182.

    Article  PubMed  Google Scholar 

  35. Rifici, V.A. and Khachadurian, A.K. (1992) The inhibition of low-density lipoprotein oxidation by 17-ß estradiol. Metabolism 41: 1110–1114.

    Article  PubMed  CAS  Google Scholar 

  36. Frei, B., Forte, T.M., Ames, B.N. and Cross, C.E. (1991) Gas phase oxidants of cigarette smoke induce lipid peroxidation and changes in lipoprotein properties in human blood plasma. Biochem. J. 277: 133–138.

    PubMed  CAS  Google Scholar 

  37. Frei, B., Stocker, R. and Ames, B.N. (1988) Antioxidant defenses and lipid peroxidation in human blood plasma. Proc. Natl Acad. Sci. USA 85: 9748–9752.

    Article  PubMed  CAS  Google Scholar 

  38. Miller, N.J., Rice-Evans, C., Gopinathan, V., Davies, M.J. and Milner, A. (1993) A new automated method for estimating plasma antioxidant activity and its application to the investigation of antioxidant status in premature neonates. In: F. Corongiu, S. Banni, M.A. Dessi and C. Rice-Evans (eds): Free Radicals and Antioxidants in Nutrition, Richelieu Press, London, pp 153–168.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Hininger, I. et al. (1995). Measurement of low-density lipoprotein oxidation. In: Favier, A.E., Cadet, J., Kalyanaraman, B., Fontecave, M., Pierre, JL. (eds) Analysis of Free Radicals in Biological Systems. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9074-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9074-8_14

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9895-9

  • Online ISBN: 978-3-0348-9074-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics