Skip to main content

Mechanical Problems in Geodynamics and Work Done in China

  • Chapter
Mechanics Problems in Geodynamics Part I

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 151 Accesses

Abstract

The subject of geodynamics concerns the dynamics of the global motion of the earth, of the motion in the earth’s interior and its interaction with surface features, together with mechanical processes in the deformation and rupture of geological structures. A brief historical review is given from Sir I. Newton, Maclauwin, Jacobi, Poincaré, Poisson, Lamé, Darwin, Rayleigh, and Love, who dealt with the homogeneous sphere, to Leibenson, Takeuchi, and Meinesz, concentrating on layered spheres, and after the advent of plate tectonics, on the use of numerical simulation, to the analyses of tectonic features, earthquake mechanism, the application of nonlinear dynamics. By discussing the forward and inverse mechanical problems, and the questions facing the inverse problems of searching for the structural parameters, driving forces, etc. are raised in more detail. Thereafter, some works accomplished in China on the global and regional stress fields analyses; tectonic features’ analyses, mantle flow studies; experimental studies of rocks and their constitutive relations are presented. Finally, the interdisciplinary nature of the subject is emphasized, and the main mechanical problems that need special attention are then proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahrens, T. J., Application of shock wave data to earth and plenetary science, In Shock Waves in Condensed Matter(ed. Gupta, Y.. M.) ( Plenum, New York 1986 ) 571 pp.

    Google Scholar 

  • Ahrens, T. J., and O’Keefe, J. D. (1987), Impact on the Earth Ocean and Atmosphere, Int. J. Impact Eng. 5, 13–32.

    Google Scholar 

  • Airy, G. B. (1855), Phil. Trans. Roy. Soc. London 145, 101.

    Google Scholar 

  • Aki, K., and Richards, P. G., Quantitative Seismology: Theory and Methods, Vol. 2 (W.H. Freeman and Co. 1980).

    Google Scholar 

  • Anderson, E. M., The Dynamics of Faulting (Oliver and Boyd, Edinburgh 1951).

    Google Scholar 

  • Artyushkov, E. V., Geodynamics (Elsevier, Amsterdam 1983).

    Google Scholar 

  • Ashby, M. F., and Verrall, R. A. (1977), Micromechanism of Flow and Fracture and Their Relevance to the Rheology of the Upper Mantle, Phil. Trans. Roy. Soc. London A288, 59–95.

    Google Scholar 

  • Biot, M. A., Mechanics of Incremental Deformation (John Wiley, 1965).

    Google Scholar 

  • Bolt, B. A., and Deer, J. S. (1969), Global Free Oscillation of the Earth, Vista in Astronomy 11, 69–102.

    Google Scholar 

  • Buffet, B. A., Mathews, P. M., and Shapiro, I. I. (1993), Forced Nutations of the Earth

    Google Scholar 

  • Contributions from the Effects of Ellipticity and Rotation on the Elastic Deformations, J. Geophys. Res. 98 (B12), 21659–21676.

    Google Scholar 

  • Burov, E. B., and Diamont, M. (1992), Flexure of the Continental Lithosphere with Mulitlayered Rheology Geophys J. Int. 109, 449–468.

    Google Scholar 

  • Burridge, R., and Knopoff, L. (1967), Model and Theoretical Seismicity, Bull. Seismol. Soc. Am. 57, 341–371.

    Google Scholar 

  • Cai, Y. E., Yin, Y. Q., and Wang, R. (1992), The Influence of Thermal State on Earthquake Occurrence Acta Geophys. Sinica 35(2), 204–213.*

    Google Scholar 

  • Chandrasekhar, S., Ellipsoidal Figures of Equilibrium (Yale Univ. Press 1969).

    Google Scholar 

  • Chen, Q. (1986), Mechanical Study on Gravitational StructureMechanical Analysis of Listric Fault, Seismol. and Geology (Beijing, English version) 8 (3), 22–31.

    Google Scholar 

  • Christensen, U. (1983), Convection in a Variable Viscosity Fluid: Newtonian vs. Power Law Rheology, Earth and Planet. Sci. Lett. 64, 153–162.

    Google Scholar 

  • Darwin, G. H. (1882), On the Stresses Caused in the Interior of the Earth by the Weight of Continents and Mountains, Phil. Trans. Roy. Soc. London 59, 187–230.

    Google Scholar 

  • Dieterich, J. H., and Onat, T. (1969), Slow Finite Deformation of Viscous Solids, J. Geophys. Res. 74, 2081–2088.

    Google Scholar 

  • Ding, Z. Y., Jia, J. K. and Wang, R. (1983), Seismic Triggering Effect of Tidal Stress, Tectonophys. 93, 319–335.

    Google Scholar 

  • Ding, Z. Y., and Shen, Y. Q. (1991), Quasi-static Response of a Layered Viscoelastic Half-space to General Surface Loading, Phys. Earth Planet. Int. 66, 278–289.

    Google Scholar 

  • Ding, Z. Y., and Shen, Y. Q. (1993), An Inversion of Physical Parameters of the Earth’s Interior in the Qaidumu Basin, Acta Geophys. Sinica 35 (5), 615–620.*

    Google Scholar 

  • Ding, Z. Y., and Wang, R. (1986), Global Displacement and Stress Fields due to Tidal Attraction, Acta Geophys. Sinica 29 (6), 578–596.*

    Google Scholar 

  • Dziewonski, A. M., and Anderson, D. L. (1981), Preliminary Reference Earth Model, Phys. Earth Planet. Inter. 25, 297–356.

    Google Scholar 

  • Fang, H., and Jin, J. S. (1992), The Determination of Shear Fracture Energy of Marble under Triaxial Compression, Acta Geophys. Sinica 35 (6), 748–752.*

    Google Scholar 

  • Fowler, A. C. (1993), Boundary Layer Theory and Subduction, J. Geophys. Res. 98 (B12), 21997–22006.

    Google Scholar 

  • Frick, H., Busse, F. M., and Clever, R. M. (1983), Steady 3-D Convection at High Prandtl Numbers, J. Fluid Mech. 127, 141–153.

    Google Scholar 

  • Fu, R. S., and Huang, J. H. (1990), Global Stress Pattern Constrained on Deep Mantle Flow and Tectonic Features, Phys. Earth Planet. Int. 60, 314–323.

    Google Scholar 

  • Fu, R. S., and Huang, J. H. (1993), Mantle Convection Model Constrained on Several Geophysical Data, Acta Geophys. Sinica 36 (3), 297–307.*

    Google Scholar 

  • Fu, R. S., Lin, F., and Huang, J. H. (1992), Plate Absolute Motion and Thermal Mantle Convection, Acta Geophys. Sinica 35 (1), 52–61.*

    Google Scholar 

  • Fu, S. Q., Jin, X. G., Wang, D. D., and Chen, P. S. (1993), Application of Equation of State of Nadan Iron Meteorite to Earth’s Core, Acta Geophys. Sinica 36 (2), 158–163.*

    Google Scholar 

  • Gao, X. L., Luo, H. Y., and Neugebauer (1989), 3-Dimensional Numerical Modeling for the Dynamics of the Continental Collision, Seismol. and Geology 9 (2), 65–73.*

    Google Scholar 

  • Glatzmaier, G. R. (1988), Numerical Simulations of Mantle convection: Time-dependent, 3-dimen- sional, Compressible, Spherical Shell, Geophys. Astrophys. Fluid Dyn. 43, 223–267.

    Google Scholar 

  • Glatzmaier, G. R., and Schubert, G. (1993), 3-Dimensional Spherical Model of Layered and Whole Mantle Convection, J. Geophys. Res. 98 (B12), 21969–21976.

    Google Scholar 

  • Glikson, A. Y. (1995), Asteroid /Comet Mega-Impacts May Have Triggered Major Episodes of Crustal Evolution, EOS Trans. Am. Geophys. Union 76(6),49–55.

    Google Scholar 

  • Griggs, D. T. (1939), A Theory of Mountain Building, Am. J. Sci. 237 (9), 611–650.

    Google Scholar 

  • Gutenberg, B., Rheological problems of the earth interior. In Rheology, vol. II (ed. Eirich, F. R.) (Acad. Press, 1958) pp. 401–431.

    Google Scholar 

  • Hager, B. H., and O’Connell, R. J. (1978), Subduction Zone Dip Angles and Flow Driven by Plate Motion, Techonophys. 50, 111–133.

    Google Scholar 

  • Huang, J. F., Wang, Z. Y., and Zhao, Y. H. (1993), The Development of Rock Fracture from Microfracturing to Main Fracture Formation, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 30 (7), 925–928.

    Google Scholar 

  • Huang, Q. H. (1974), Analytic and Experimental Study of en echelon Structures, Scientia Sinica 7 (5), 492–500 (in Chinese).

    Google Scholar 

  • Jeans, J. H. (1903), On the Vibration and Stability of a Gravitating Planet, Phil. Trans. Roy. Soc. London A201.

    Google Scholar 

  • Jeffreys, H. (1917), Month. Notice Roy. Astro. Soc. 77, 449. The Earth, 4th ed. (Camb. Univ. Press 1957).

    Google Scholar 

  • Jia, J. K., and Wang, R. (1981), Variation of Earth Rotation Speed and Earthquake Triggering, Seismol. Res. 2, 1–9 (in Chinese).

    Google Scholar 

  • Jian, F. Y., and Li, Y. T. (1989), Magma Ascent Through the Lithosphere, Scientia Sinica 32B, 518–522.

    Google Scholar 

  • Jiang, W., and Song, H. Z. (1987), A Viscoelastic Finite Element Model for Earthquake Migration in Beijing and its Neighbourhood, Acta Seismologica Sinica, 9 Suppl., 337–344.

    Google Scholar 

  • Karman, Th. Von, (1911), Festigkeitsversuche unter allseitigem Druck, Z. Ver. t. Ing. 55, 1749–1757.

    Google Scholar 

  • Kawamoto, T. (1988), Deformation and Fracturing Behavior of Discontinuous Rock Mass and Damage Mechanics Theory, Int. J. Num. Anal. Geo. 12, 1–30.

    Google Scholar 

  • Kelvin, W. L. (1863), On the Rigidity of the Earth, Phil. Trans. Roy. Soc. London 153, 573.

    Google Scholar 

  • Kopitzke, U. I. (1979), Finite Element Convection Models: Comparison of Shallow and Deep Mantle Convection and Temperature, J. Geophys. 46, 97.

    Google Scholar 

  • Kostrov, B. V. (1974), Seismic Moment and Energy of Earthquakes and Seismic Flow of Rock, Isvestiya Phys. of Solid Earth, 13–21.

    Google Scholar 

  • LamÉ, M. G. (1854), L’equilibre d’Elasticite des Enveloppes Spheriques, J. de Math. Pure and Appl. 19, 51.

    Google Scholar 

  • Lan, L. B., and Wang, R. (1987), Finite-element Analysis of an Overturned Fold Using a Viscous Fluid Model, Techtonophys. 139, 309–314.

    Google Scholar 

  • Lee, J. S., Introduction to Geomechanics (Gordon and Breach Sci. Pub. Inc. New York 1984).

    Google Scholar 

  • Leibenson, L. C. (1915), Deformation of Elastic Sphere with Connection to Problems of Earth’s Structure, Isv. Acad. Sci. USSR, 185–226 (in Russian).

    Google Scholar 

  • Li, Y. T., and Guan, D. X. (1979), Driving Mechanism of Sea Floor Spreading, Scientia Sinica 22 (3), 281–292.

    Google Scholar 

  • Li, Y. T., Meissner, R. O., and Xue, E. (1985), Mechancal and Thermal Structure of a Cylindrical Plume in the Earth’s Mantle, Scientia Sinica 28 (Bl), 92–100.

    Google Scholar 

  • Liang, H. H., Jia, J. K., and Wang, R. (1986), Numerical Simulation of the Relationship between Earthquake and Stress Field in Southwestern China, Acta Seismologica Sinica, Suppl., 48–55.*

    Google Scholar 

  • Love, A. E. H., Some Problems of Geodynamics (Camb. Univ. Press 1911).

    Google Scholar 

  • Mathews, P. M., Buffett, B. A., Herring, T. A., and Shapiro, I. I. (1991), Forced Nutations of the Earth: Influence of Inner Core Dynamics, J. Geophys. Res. 96, 8219–8242.

    Google Scholar 

  • Meinesz, F. A. V. (1947), Shear Patterns of the Earth Crust, EOS Trans. Am. Geophys. Union 28 (1).

    Google Scholar 

  • Meinesz, F. A. V. (1948), Major Tectonic Phenomena and the Hypothesis of Convection Currents in the Earth, Quart. J. Geol. Soc. London 103, 191–207.

    Google Scholar 

  • Minister, J. B., Jordan, T. H., Molner, P., and Haines, E. (1974), Numerical Modelling of Instantaneous Plate Tectonics, Geophys. J. R. Astr. Soc. 36, 541–576.

    Google Scholar 

  • Mologenskii, M. C. (1953), Elastic Flow, Free Nutation and Some Problems of Earth Structure, Isv. Acad. Sci. USSR 19, 3–52 (in Russian).

    Google Scholar 

  • Montagner, J. P., and Anderson, D. (1989), Constrained Reference Mantle Model, Phys. Earth. Planet. Inter. 58, 205–227.

    Google Scholar 

  • Nadai, A., and Wahl, A. M., Plasticity (McGraw Hill 1931).

    Google Scholar 

  • Niu, Z. R., and Shi, X. J. (1992), Statistical Theory of Rock Fractal Fracture, Acta Seismologica Sinica 35 (5), 574–603.*

    Google Scholar 

  • O’Keefe, T. J., and Ahrens, T. J. (1989), Impact Production of C0 2 by the Cretaceous Tertiary Extension Bolide and the Resultant Heating of the Seismological Laboratory, Nature 338, 247.

    Google Scholar 

  • Pan, E. N., Ding, Z. Y., and Wang, (1986), The Response of a Spherically Stratified Earth Model to Body Force and Surface Potencial Load, Acta Sci. Natur. Univ. Pekin 22, 66–80*

    Google Scholar 

  • Pekeris, G. L. (1935), Mon. Not. R. Astron. Soc. Geophys. Suppl. 3, 343.

    Google Scholar 

  • Peltier, W. R., and Farrell, W. E., and Clark, J. A. (1978), Glacial Isostasy and Relative Sea Level A Global Finite Elemet Model, Tectonophys. 50(2/3), 81–110.

    Google Scholar 

  • Poisson, S. D. (1829), Memoire sur l’Equilibre et le Mouvemant des Corps Elastiques, Mem. de L’Acad. 8.

    Google Scholar 

  • Press, F. (1970) Earth Model Consistent with Geophysical Data, Phys. Earth Planet. Inter. 3, 3–22.

    Google Scholar 

  • Rayleigh, L. (1887), Wave Propagated over the Surface of an Isotropic Elastic Solid Body, London Math. Soc. Proc. 17, Sci. Papers, vol. 2, p. 441.

    Google Scholar 

  • Rice, J. R. The mechanisms of earthquake rupture. In Proc. Intern. School of Physics, “Enrico Fermi” (Italian Phys. Soc. 88, ed. by Boschi, E. and Dziewonski, North Holland Pub. Amsterdam 1980) pp. 555–649.

    Google Scholar 

  • Rice, J. R. (1993), Spatio-temporal Complexity of Slip on a Fault, J. Geophys. Res. 98 (B6), 9885–9907.

    Google Scholar 

  • Richardson, R. M., Solomon, S. C., and Sleep, N. H. (1979), Tectonic Stress in the Plates, Rev. Geophys. Space Phys. 17, 981–1019.

    Google Scholar 

  • Richardson, R. M., and Cox, B. L. (1984), Evolution of Oceanic Lithosphere: A Driving Force Study of the Nazca Plate, J. Geophys. Res. 89, 10043–10052.

    Google Scholar 

  • Richardson, R. M., and Reding, L. M. (1991), North American Plate Dynamics, J. Geophys. Res. 96, 12201–12223.

    Google Scholar 

  • Runcorn, S. K. (1964), Satellite Gravity Measurement and a Laminar Viscous Flow Model of the

    Google Scholar 

  • Earth’s Mantle, J. Geophys. Res. 69, 4389–4394.

    Google Scholar 

  • Rundle, J. B. (1993), Magnitude-frequency Relations for Earthquake Using a Statistical Mechanical Approach, J. Geophys. Res. 98 (B12), 21943–21950.

    Google Scholar 

  • Rundle, J. B., and Turcotte, D. L., New directions in theoretical studies of tectonic deformation: A survey of recent progress, In Contributions of Space Geodesy to Geodynamics: Crustal Dynamics (ed. Smith, D. E., and Turcotte, D. L.), (AGU Press, 1993) pp. 107–129.

    Google Scholar 

  • Scheidegger, A. E., Principles of Geodynamics, 3rd ed. (Springer, Berlin 1982).

    Google Scholar 

  • Scholz, C. H., The Mechanics of Earthquake and Faulting (Camb. Univ. Press, 1990).

    Google Scholar 

  • Shen, Y. Q., and Ding, Z. Y. (1994), A Study of the Subsidence Mechanism of the Qaidamu Basin, Acta Sci. Natur. Univ. Pekin 30 (2), 194–201.*

    Google Scholar 

  • Shi, G. R., and Kuo, J. T. (1989), Dynamic Simulation System of Sedimentary Basin, Geophys.

    Google Scholar 

  • Prospecting of Petroleum, Bejing 27 (3/4), 1–15, 29–46.*

    Google Scholar 

  • Shi, Y. L., and Wang, C. Y. (1993), Roll-back Subduction and Back-arc Opening, Acta Geophys. Sinica 36 (1), 37–43.*

    Google Scholar 

  • Shi, Y. L., Zhu, Y. Q., and Shen, X. J. (1992), Tectonic Processes and Thermal Evolution of the

    Google Scholar 

  • Qinghai-Xizang (Tibetan) Plateau, Acta Geophys. Sinica 35 (6), 710–720.*

    Google Scholar 

  • Sornette, A., Sornette, D. (1989), Self-organized Criticality and Earthquakes, Europhys. Lett. 9, 197–202.

    Google Scholar 

  • Steacy, S. J., and Sammis, C. G. (1992), A Damage Mechanics Model for Fault Zone Friction, J.

    Google Scholar 

  • Geophys. Res. 97 (B1), 587–594.

    Google Scholar 

  • Stewart, C. A., and Turcotte, D. L. (1989), The Route to Chaos in Thermal Convection at Infinite Prandtl Number, J. Geophys. Res. 94B, 13707–13717.

    Google Scholar 

  • Stuart, W. (1979), Strain Softening Prior to Two-dimensional Strike-slip Earthquake, J. Geophys. Res. 84, 2153–2160.

    Google Scholar 

  • Sun, X. Y. (1994), The Influence of Retrograde Migration of the Trench on Mantle Convection, Acta Geophys. Sinica 37(6).*

    Google Scholar 

  • Sun, X. Y., and Huang, X. H. (1994a), Structural Stress Field of Zhujiang Delta and Surrounding Area Before Honghai Bay Earthquake in 1911, Acta Geophys. Sinica, in press.*

    Google Scholar 

  • Sun, X. Y., Liu, J. Y., and Wang, R. (1994b), The Simulation of Coseismic and Postseismic Crustal Deformation due to Tangshan Earthquake in 1976, Acta Geophys. Sinica 37(1), 45–55.*

    Google Scholar 

  • Takeuchi, H. (1950), On the Earth Tide in the Compressible Earth of Varying Density and Elasticity Trans. Am. Geophys. Union 31, 651–689.

    Google Scholar 

  • Tan, T. K, He, Z. T., and Zheng, J. Z. (1982), A physico-rheological model for the Large Tangshan Earthquake, Tectonophys. 85, 123–148.

    Google Scholar 

  • Teng, C. K., Bai, W. M., and Wang, X. H. (1993), The Stress Field Features in the Multi-faulting

    Google Scholar 

  • Medium with Friction, Acta Geophysica Sinica 35 (4), 469–478.*

    Google Scholar 

  • Toki, K., Cai, Y. E., and Zhao, Z. D. (1989), A Work Softening Joint Element Used in Dynamic

    Google Scholar 

  • Analysis of Soil Structure, Acta Mechanica Sinica (English version) 5 (4), 353–360.

    Google Scholar 

  • Torrance, K. E., and Turcotte, D. L. (1971), Thermal Convection with Layer Viscosity Variations, J. Fluid Mech. 47, 113–125.

    Google Scholar 

  • Turcotte, D. L., and Oxburgh, E. R. (1967), Finite Amplitude Convection Cells and Continental Drift, J. Fluid Mech. 28, 29–42.

    Google Scholar 

  • Turcotte, D. L. (1979), Flexure, Advances in Geophys. 21, 51–86.

    Google Scholar 

  • Turcotte, D. L., and Schubert, G., Geodynamics—Applications of Continuum Physics to Geological Problems (John Wiley and Sons, Inc. 1982) 450 pp.

    Google Scholar 

  • Turcotte, D. L., Fractal and Chaos in Geology and Geophysics (Cambridge Univ. Press, 1992) 221 pp.

    Google Scholar 

  • Wang, Q. M., and TÖksÖz, N. M. (1983), A Finite Element Model for Sluggish Accumulation and

    Google Scholar 

  • Relaxation of the Stress along the Fault Zone, Seismol. and Geology 5 (3), 43–53.*

    Google Scholar 

  • Wang, R. (1983), A Short Note on the Inversion of Tectonic Stress Field, Tectonophys. 100, 405–411.

    Google Scholar 

  • Wang, R., and Ding, Z. Y., Axi-symmetric Global stress field due to change of earth’s rotation and to tidal attraction. In Proc. Astro-Geodynamic Conf. 1978 (Shanghai Astron. Obs. Press 1978) 8–21 (in Chinese).

    Google Scholar 

  • Wang, R., He, G. Q., and Wang, Y. F. (1980), On the Global Tectonic Stress Field due to the Variation of Earth’s Rotation, presented at 26th IGC, Paris.

    Google Scholar 

  • Wang, R., Sun, X. Y., and Cai, Y. E. (1983), A Mathematical Simulation of Earthquake Sequence in North China in the Last 700 Years, Scientia Sinica 26 (Bl), 103–112.

    Google Scholar 

  • Wang, R., Yin, Y. Q., and Cai, Y. E. (1993), Constitutive Modeling of Softening Behavior of Earth

    Google Scholar 

  • Fault, presented in Plasticity –93, Baltimore.

    Google Scholar 

  • Wang, R., Zhao, Y. S., Chen, Y., Yan, H., Yin, Y. Q., Yao, C. Y., and Zhang, H. (1987), Experiment and Finite Element Simulation of X-type Shear Fractures from a Crack in Marble, Tectonophys. 144, 141–150.

    Google Scholar 

  • Wang, W. X., and Han, Y. Y. (1978), Mechanical analysis of checkerboard structure. In Proc.

    Google Scholar 

  • Geomechanics, No. 4 (Geology Press, Beijing 1978) (in Chinese).

    Google Scholar 

  • Wu, C. H., and Cao, G. Z. (1984), Buckling Problems in Finite Plane Elasticity-harmonic Materials, Quart. Appl. Math. 41(4), 461–474.

    Google Scholar 

  • Wu, J. P., and Liu, Y. L. (1992), A Study on the Relation Between Satellite Gravity Anomalies, Mantle Convection Stress and Modern Plates Movement, Acta Geophys. Sinica 35 (5), 604–612.*

    Google Scholar 

  • Xie, H. S., Zhang, Y. M., Xu, H. G. et al. (1993), A New Method of Measurement for Elastic Wave Velocities in Minerals and Rocks at High Temperature and High Pressure and its Significance, Science in China 36 (B10), 1276–1280.

    Google Scholar 

  • Xu, Z. H., Wang, S. Y., and Yu, Y. X. (1992), Inversion of Stress Direction Data by Finite Element Analysis to Obtain Plate Boundary Forces, Acta Seismol. Sinica (English edition) 6 (1), 111–122.

    Google Scholar 

  • Yang, G. Y. (1982), A Study of Strong Earthquake and the Tectonic Stress Field of Southwestern China and its Adjacent Areas, Acta Seismologica Sinica 4 (2), 182–189.*

    Google Scholar 

  • Ye, Z. R., Bai, W. M., and Teng, C. K. (1993), The Numerical Modeling of Mantle Convection and its Relationship to Surface Observations, Acta Geophys. Sinica 36 (1), 27–36.*

    Google Scholar 

  • Ye, Z. R., and Hong, M. D. (1983), The Action of the Mantle Asthenosphere on the Plates, Driving or Dragging, Acta Geophys, Sinica 26 Suppl., 651–659.*

    Google Scholar 

  • Zang, S. X. (1983), The Effect of Infiltration of Water and Mechanism and Characteristics of Earthquake in Xinfengjiang Reservoir, Seismol. and Geology 5 (2), 59.*

    Google Scholar 

  • Zhan, S. X., and Ning, J. Y. (1994), The Negative Buoyancy of the Subduction Zone and its Affecting Factors, Acta Geophys. Sinica 37(2), 174–183.*

    Google Scholar 

  • Zhang, D. N., and Gao, L, S. (1989), 3-Dimensional Numerical Simulation of Eastern Asian Stress Field, Earthq. Res. in China 5 (4), 24–33.

    Google Scholar 

  • Zhang, L. M., and Tang, X. M. (1983), The Underthrusting Movement of the Western Pacific Plate and the Deep Focus Earthquake Zone of Northeast China, Acta Geophys. Sinica 26, 331–340.*

    Google Scholar 

  • Zhang, S., and Yuen, D. A. (1987), Deformation of the Core-mantle Boundary Induced by Spherical Shell Compressible Convection, Geophys. Res. Lett. 14, 899–902.

    Google Scholar 

  • Zhang, S., Yuen, D. A., and Langenberger, S. E. (1988), Effect of Compressibility on the Temperature Jump at the Interface of Layered Spherical Shell Convection, Geophys. Res. Lett. 15, 447–450.

    Google Scholar 

  • Zhao, Y. H., Huang, J. F., and Wang, R. (1993a), SEM Study of Fracture Development in Compressed Marble Specimen and Implications for Earthquake Precursors, Acta Geophys. Sinica 36 (4), 453–462.*

    Google Scholar 

  • Zhao, Y. H., Huang, J. F., and Wang, R. (1993b), Fractal Characteristics of Mesofractures in Compressed Rock Specimens, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 30 (7), 877–882.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Verlag

About this chapter

Cite this chapter

Wang, R. (1995). Mechanical Problems in Geodynamics and Work Done in China. In: Wang, R., Aki, K. (eds) Mechanics Problems in Geodynamics Part I. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9065-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9065-6_2

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-5104-5

  • Online ISBN: 978-3-0348-9065-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics