Skip to main content

The Effect of Fault-bend Folding on Seismic Velocity in the Marginal Ridge of Accretionary Prisms

  • Chapter
Mechanics Problems in Geodynamics Part I

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 150 Accesses

Abstract

Fluid venting in accretionary prisms, which feeds chemosynthetic biological communities, occurs mostly on the marginal thrust ridge. New seismic data for the marginal ridge of the Cascadia prism show significantly lower velocity than that in the adjacent oceanic basin and place important constraints on the interpretations of why fluid venting occurs mostly on the marginal ridge. We employed a finite-element method to analyze a typical fault-bend folding model to explain the phenomenon. The fault in the model is simulated by contact elements. The elements are characterized not only by finite sliding along a slide line, but also by elastoplastic deformation.

We present the results of a stress analysis which show that the marginal ridge is under subhorizontal extension and the frontal thrust is under compression. This state of stress favors the growth of tensile cracks in the marginal ridge, facilitates fluid flow and reduces seismic velocities therein; on the other hand, it may close fluid pathways along the frontal thrust and divert fluid flow to the marginal ridge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Agar, S. M. (1990), The interaction of Fluid Processes and Progressive Deformation during Shallow Level Accreation: Examples from Shimanto Belt of SW Japan, J. Gephys.95, 9133–9147.

    Google Scholar 

  • Bebout, G. E. (1919), Geometry and Mechanisms of Fluid Flow at 15 to 45 km depths in an Early Creataceous Accretionary Complex, Geophys. Res. Lett. 18, 923–926.

    Google Scholar 

  • Boulegue, J., Iiyama, J T., Charlon, J.-L., and Jedwab, J. (1987), Nankai Trough, Japan Trench and Kuril Trench, Geomechanical Fluids.

    Google Scholar 

  • Carson, B. (1977), Tectonically-induced Deformation of Deep-sea Sediments off Washington and Oregon; Mechanical Consolidation, Mar. Geol. 24, 298–307

    Google Scholar 

  • Carson, B., Holmes, M. L., Umstet, D, Strasser, J. G., and JOHNSON, H. P. (1990), Fluid Expulsion from the Cascadia Accretionary Prism: Evidence from Poresity Distribution, Direct Measurements, and GLORIA Imagery, Philos, Trans. R. Soc. London A. 335, 331–340.

    Google Scholar 

  • Cloos, M. (1984), Landward-dipping Reflectors in Accretionary Wedges: Active Dewatering Conducts? Geology 12, 519–522

    Google Scholar 

  • Cochrane, G. R., Moore, J. C., MacKay, M. E., and Moore, G. F. (1994), Velocity-porosity Model of the Oregon Accretionary Prism from Multichannel Seismic Reflection Data, J. Geophys. Res. 99, 7033–7043.

    Google Scholar 

  • Coward, M. P., Nell, P. R., and TALBOT, J., An analysis of strains is associated with the Moine Thrust Zone, Assynt, Northwest Scotland. In Stuctural Geology of Fold and Thrust Belts(eds. Mitra, S., and Fisher, G. W.) (John Hopkins Univ. Press 1992 ) pp. 105 – 122.

    Google Scholar 

  • Davis, D., Suppe, J., and Dahlen, F. A. (1983), The Mechanics of Fold-and-thrust belts, J. Geophys. Res. 88, 1153–1172.

    Google Scholar 

  • Dix, D. H. (1955), Seismic Velocities from Surface Measurements, Geophysics 20, 68–86

    Google Scholar 

  • Fisher, D. M., and Brantley, S. L. (1992), Models of Quartz Overgrowth and Vein Formation: Deformation and Episodic Fluid flow in an Ancient Subduction Zone, J. Geophys. Res. 97, 20043–20061.

    Google Scholar 

  • Hamilton, E. L. (1978), Sound Velocity-density Relations in Sea-floor Sediments and Rocks, J. Acoust. Soc. Am. 63, 366–377

    Google Scholar 

  • Henry, P., and Wang, C.-Y. (1991), Modeling of Fluid Flow and Pore Pressure at the Toe of the Oregon and Barbados Accretionary Wedges, J. Geophys. Res. 96, 2019–20130.

    Google Scholar 

  • Horath, F. (1989), Permeability evolution in the Cascadia Accretionary Prism: Examples from the Oregon Prism and Olympic Peninsula Melanges. M.Sc. Thesis, University of California, Santa Cruz.

    Google Scholar 

  • Kulm, L. D., von Huene, R., and Shipboard Scientific Party (1973), Shipboard Site Report: Site 174 and Site 175, Initial Rep. Deep Sea Drill. Proj. 18, 97–212.

    Google Scholar 

  • Kulm, L. D. et al. (1986), Oregon Subduction Zone: Venting, Fauna, and Carbonates, Science 231, 561 – 566.

    Google Scholar 

  • Le Pichon, X. et al. (1987), Nankai Trough and Zenisu Ridge: A Deep-sea Submersible Survey, Earth Planet. Sci. Lett. 83, 285–299.

    Google Scholar 

  • Lewis, B. T. R., Changes in P and S velocities caused by subduction related accretion off Washington /Oregon. In Shear Waves in Marine Sediments(Hovem; Richardson; and Stol, eds.) (Kluver Academic Publications 1990 ).

    Google Scholar 

  • MacKay, M. E., Moore, G. F., Cochrane, G. R., Moore, J. C., and Kulm, L. D. (1992), Landward Vergence and Oblique Structural Trends in the Oregon Margin Accretionary Prism: Implications and Effect on Fluid Flow, Earth Planet. Sci. Lett. 109, 477–491.

    Google Scholar 

  • McPherson, R. C., and Dengler, L. A. (1992), The Honeydew Earthquake, California Geology, 31–39.

    Google Scholar 

  • Moore, J. C., Orange, D., and Kulm, L. D. (1990), Interrelationship of Fluid Venting and Structural Evolution: Alvin Observations from the Frontal Accretionary Prism, Oregon, J. Geophys. Res. 95, 8795–8808.

    Google Scholar 

  • O’Connell, R., and Budiansky, B. (1974), Seismic Velocities in Dry and Saturated Cracked Solid, J. Geophys. Res. 79, 5412–5425.

    Google Scholar 

  • Riddihough, R. P. (1984), A Model for Recent Plate Interaction off Canada’s West Coast, Can. J. Earth. Sci. 14, 384–396.

    Google Scholar 

  • Screaton, E. J., Wuthrich, D. R., and Dreiss, S. J. (1990), Permeabilities, Fluid Pressures, and Flow Rates in the Barbados Ridge Complex, J. Geophys. Res. 95, 8997–9007.

    Google Scholar 

  • Seely, D. R., The significance of landward vergence and oblique structural trends on trench inner slopes. In Island Arcs, Deep Sea Trenches, and Back-Arc Basins (eds. Talwani, M., and Pitman, W. C. Ill) (Amer. Geophys. Union Maurice Ewing Series 1, Washington D.C. 1977) pp. 187–198.

    Google Scholar 

  • Shi, Y., Wang, C.-Y., and von Huene, R. (1989), Hydrogeological Modeling of Porous Flow in the Oregon Accretionary Prism, Geology 17, 320–323.

    Google Scholar 

  • Snavely, P. D., Jr., and Miller, J. The central Oregon continental margin, lines WO76-4 and W076-5 Seismic images of modern convergent margin tectonic structure (ed. von Huene, R.) In AAPG Stud. Geol. Vol. 26, pp. 24–29.

    Google Scholar 

  • Suess, E., Carson, B., Ritger, S., Moore, J. C., Jones, M. L., Kulm, L. D., and Cochrane, G., (1985), Biological communities at vent sites along the subduction zone off Oregon. In The Hydrothermal Vents of the Eastern Pacific: An Overview (ed. Jones, M. L.) Biol. Soc. Wash. Bull. 6, 474–484.

    Google Scholar 

  • Suppe, J. (1983), Geometry and Kinematics of Fault-bend Folding, Am. J. Sc. 283, 648–721.

    Google Scholar 

  • Taner, M. T., and Koehler, F. (1969), Velocity Spectra-digital Computer Derivation and Applications of Velocity Functions, Geophys. 34, 859–881.

    Google Scholar 

  • Vrolijk, P. J. (1987), Technically-driven Fluid Flow in the Kodiak Accretionary Complex, Alaska, Geology 15, 466–469.

    Google Scholar 

  • Wang, C.-Y., Shi, Y., Hwang, W.-T., and Chen, H. (1990), Hydrogeologic Processes in the Oregon-Washington Accretionary Complex, J. Geophy. Res. 95, 9009–9033.

    Google Scholar 

  • Westbrook, G. K. (1991), Geophysical Evidence for the Role of Fluids in Accretionary Wedge Tectonics, Philos, Trans. R. Soc. London A 335, 227–242.

    Google Scholar 

  • Westbrook, G. K., and Smith, M. T. (1983), Long Decollements and Mud Volcanoes: Evidence from the Barbados Ridge Complex for the Role of High Pore Pressure in the Development of an Accretionary Wedge, Geology 11, 279–285.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Verlag

About this chapter

Cite this chapter

Cai, Y., Wang, CY., Hwang, WT., Cochrane, G.R. (1995). The Effect of Fault-bend Folding on Seismic Velocity in the Marginal Ridge of Accretionary Prisms. In: Wang, R., Aki, K. (eds) Mechanics Problems in Geodynamics Part I. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9065-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9065-6_14

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-5104-5

  • Online ISBN: 978-3-0348-9065-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics