Skip to main content

Enzymatic substrate recycling electrodes

  • Chapter
Frontiers in Biosensorics II

Part of the book series: EXS ((EXS,volume 81))

Summary

A weak chemical signal might result in a large response when biochemically amplified. Enzymatic recycling of the analyte is one of the biochemical ways of providing an effective increase in biosensor sensitivity by several orders of magnitude. The enhancement of sensitivity is provided by consecutive consumption and generation of the analyte on the sensor surface. The principle of enzymatic substrate regeneration using bioelectrocatalysis and coupled enzymes is shortly reviewed and illustrated with some recent developments of biosensors for catecholamines, and its potential for electrochemical immunoassays is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Athey, D. and McNeil, C. (1994) Amplified electrochemical immunoassay for thyrotropin using thermophilic β-NADH oxidase. J. Immunol. Meth. 176: 153–162.

    Article  CAS  Google Scholar 

  • Bauer, C.G., Eremenko, A.V., Ehrentreich-Förster, E., Bier, F.F. Makower, A., Halsall, H.B., Heineman, W.R. and Scheller, F.W. (1996) Zeptomole-detecting biosensor for alkaline phosphatase in an electrochemical immunoassay for 2,4-dichlorophenoxyacetic acid. Anal. Chem. 68: 2453–2458.

    Article  PubMed  CAS  Google Scholar 

  • Bier, E. and Scheller, E (1996) Bi-enzyme amplification cycles based on oligosaccharide dehydrogenase. Fies. Z. Anal. Chem. 354: 861–865.

    CAS  Google Scholar 

  • Bier, F., Förster, E., Makower, A. and Scheller, E. (1996) An enzymatic amplification cycle for highly sensitive immunoassay. Anal. Chico. Acta, 328: 27–32.

    Article  CAS  Google Scholar 

  • Chen, F.C., Lin, N.N., Kuo, J.S., Cheng, L.J., Chang, F.M. and Chia, L.G. (1994) Simultaneous measurement of plasma serotonin, catecholamines, and their metabolites by an in vitro microdialysis-microbore HPLC and a dual amperometric detector. Electroanal. 6: 871–877.

    Article  Google Scholar 

  • Ciolkowski, E.L., Maness, K.M., Cahill, P.S., Wightman, R.M., Evans, D.H., Fosset, B. and Amatore, C. (1994) Disproportionation during electrooxidation of catecholamines at carbon-fiber microelectrodes. Anal. Chem. 66: 3611–3617.

    Article  CAS  Google Scholar 

  • Conrath, N., Gründig, B., Hüwel, S. and Cammann, K. (1995) A novel enzyme sensor for the determination of inorganic phosphate. Anal. Chim. Acta 309: 47–52.

    Article  CAS  Google Scholar 

  • Dennison, M.J., Hall, J.M. and Turner, A.P.F. (1995) Gas-phase microbiosensor for monitoring phenol vapor at ppb levels. Anal. Chem. 67: 3922–3927.

    Article  CAS  Google Scholar 

  • Eremenko, A.F., Makower, A., Jin, W, Rüger, P. and Scheller, F.W. (1995a) Biosensor based on an enzyme modified electrode for highly-sensitive measurement of polyphenols. Biosens. Bioelectr. 10: 717–722.

    Article  CAS  Google Scholar 

  • Eremenko, A.F., Makower, A. and Scheller, F.W. (1995b) Measurement of nanomolar diphenols by substrate recycling coupled to a pH-sensitive electrode. Fresenius J. Anal. Chem. 351: 729–731.

    Article  CAS  Google Scholar 

  • Eremenko, A.F., Makower, A., Bauer, C., Kurochkin and Scheller, F.W. (1996) A bienzyme electrode for tyrosine containing peptides determination. Electroanal. submitted.

    Google Scholar 

  • Ewing, A.G., Strein, T.G. and Lau, Y.Y. (1992) Analytical chemistry in microenvironments: Single nerve cells. Acc. Chem. Res. 25: 440–447.

    Article  CAS  Google Scholar 

  • Ghindilis, A.L., Makower, A. and Scheller, E (1995a) Nanomolar determination of ferrocene derivatives using a recycling enzyme electrode. Development of a redox label immunoassay. Anal. Lett. 28: 1–11.

    CAS  Google Scholar 

  • Ghindilis, A.L., Makower, A., Bauer, C.G., Bier, F.F. and Scheller, E (1995b) Picomolar determination of p-aminophenol and catecholamines based on recycling enzyme amplification. Anal. Chim. Acta 304: 25–31.

    Article  CAS  Google Scholar 

  • Ghindilis, A.L., Makower, A. and Scheller, E (1995c) A laccase-glucose dehydrogenase recycling-enzyme electrode based on potentiometric mediatorless electrocatalytic detection. Anal. Meth. Instr. 2: 129–132.

    CAS  Google Scholar 

  • Gorton, L. (1995) Carbon paste electrodes modified with enzymes, tissues, and cells. Electroanal. 7: 23–45.

    Article  CAS  Google Scholar 

  • Hall, G.F., Best, D.A. and Turner, A.P.F. (1988) Amperometric enzyme electrode for the determination of phenols in chloroform. Enzyme Micro b. Technol. 10: 543–546.

    Article  CAS  Google Scholar 

  • Hopkins, T.R. (1985) A multipurpose enzyme sensor based on alcohol oxidase. Int. Biotech. Lab. 3: 20–25.

    Google Scholar 

  • Ikeda, T., Katasho, I., Kamei, M. and Senda, M. (1984) Electrocatalysis with glucose oxidase immobilized graphite electrode. J. Electroanal. Chem. 48: 1969–1979.

    CAS  Google Scholar 

  • Ikeda, T., Matsushita, E. and Senda, M. (1991) Amperometric fructose sensor based on direct bioelectrocatalysis. Biosens. Bioelectr. 6: 299–304.

    Article  CAS  Google Scholar 

  • Jankowski, J.A., Tracht, S. and Sweedler, J.V. (1995) Assaying single cells with capillary electrophoresis. TRAC 14: 170–176.

    CAS  Google Scholar 

  • Jin, W, Bier, E, Wollenberger, U. and Scheller, E. (1995) Construction and characterization of a multi-layer enzyme electrode: Covalent binding of quinoprotein glucose dehydrogenase onto gold electrodes. Biosens. Bioelectr. 10: 823–829.

    Article  CAS  Google Scholar 

  • Kaisheva, A., Iliev, I., Kazareva, R., Christov, S., Petkova, J., Wollenberger, U. and Scheller, E (1996) Enzyme/gas-diffusion electrodes for determination of phenol. Sensor. Actuator,in press.

    Google Scholar 

  • Kopp, L.E. and Miech, R.P. (1972) Nonlinear enzymatic cycling systems: the exponential cycling system. J. Biol. Chem. 247: 3558–3563.

    PubMed  CAS  Google Scholar 

  • Kulys, J.J., Sorochinskii, V.V. and Vidziunaite, R.A. (1986) Transient response of bienzyme electrodes. Biosensors 2: 135–146.

    Article  PubMed  CAS  Google Scholar 

  • Liu, A.H. and Wang, E.K. (1994) Amperometric detection of catecholamines with liquid chromatography at a polypyrrole-phosphomolybdic anion-modified electrode. Anal. Chim. Acta 296: 171–180.

    Article  CAS  Google Scholar 

  • Lowry, O.H. and Passonneau, J.V. (1972) A Flexible System of Enzymatic Analysis. Academic Press, New York.

    Google Scholar 

  • Macholan, L. (1990) Phenol-sensitive enzyme electrode with substrate recycling for quantification of certain inhibitory aromatic acids and thio compounds. Coll. Czech. Chem. Conzrnun. 55: 2152–2159.

    Article  CAS  Google Scholar 

  • Makower, A., Bauer, C.G., Ghindilis, A. and Scheller, E (1994) Sensitive detection of cocaine by combining conjugate displacement and an enzyme substrate recycling sensor. In: Biosensors 94, Proceedings of the 3rd World Congress on Biosensors. Elsevier Advanced Technology, Oxford.

    Google Scholar 

  • Makower, A., Eremenko, A.V., Streffer, K., Wollenberger, U. and Scheller, E (1995) Tyrosinaseglucose dehydrogenase substrate recycling biosensor. Highly sensitive measurement of phenolic compounds. J. Chem. Tech. Biotech. 65: 39–44.

    Google Scholar 

  • Matysik, F.M., Nagy, G. and Pungor, E. (1992) Analytical distinction between different catechols by means of reverse differential-pulse voltammetry. Anal. Chico. Acta 264: 177–184.

    Article  CAS  Google Scholar 

  • Mizutani, E, Yamanaka, T., Tanabe, Y. and Tsuda, K. (1985) An enzyme electrode for L-lactate with a chemically amplified response. Anal. Chico. Acta 177: 153–166.

    Article  CAS  Google Scholar 

  • Mizutani, E, Yabuki, S. and Asai, M. (1991) Highly-sensitive measurement of hydroquinone with an enzyme electrode. Biosens. Bioelectr. 6: 305–310.

    Article  CAS  Google Scholar 

  • Mizutani, E, Yabuki, S. and Katsura, T. (1993) Amperometric enzyme electrode with the use of dehydrogenase and NAD(P)H oxidase. Sensor Actuator B 13–14: 574–575.

    Article  Google Scholar 

  • Moore, T.J., Nam, G.G., Pipes and Coury Jr., L.A. (1994) Chemically amplified voltammetric enzyme electrodes for oxidizable pharmaceuticals. Anal. Chem. 66: 3158–3163.

    Article  CAS  Google Scholar 

  • Niwa, O., Morita, M. and Tabei, H. (1991) Highly sensitive and selective voltammetric detection of dopamine vertically separated interdigitated array electrodes. Electroanal. 3: 163–168.

    Article  CAS  Google Scholar 

  • Önnerfjord, P., Emneus, J., Marko-Varga, G. and Gorton, L. (1995) Tyrosinase graphite-epoxy based composite electrodes for detection of phenols. Biosens. Bioelectr. 10: 607–619.

    Article  Google Scholar 

  • Ortega, E, Dominguez, E., Jönsson-Pettersson, G. and Gorton, L. (1993) Amperometric bio-sensor for the determination of phenolic compounds using a tyrosinase graphite electrode in a flow injection system. J. Biotech. 31: 289–300.

    Article  CAS  Google Scholar 

  • Ortega, E, Dominguez, E., Burestedt, E., Emneus, J., Gorton, L. and Marko-Varga, G. (1994) Phenol oxidase-based biosensors as selective detection units in column liquid chromatography for the determination of phenolic compounds. J Chromatogr. 675: 65–78.

    Article  CAS  Google Scholar 

  • Pfeiffer, D., Scheller, E, McNeil, C. and Schulmeister, T. (1994) Cascade like exponential substrate amplification in enzyme electrodes. Biosens. Bioelectr. 10: 169–180.

    Article  Google Scholar 

  • Pfeiffer, D., Scheller, F.W., Wollenberger, U., Makower, A., Bier, F.F., Szeponik, J., Klimes, N., Gajovic, N., Ghindilis, A. and Scholz, C. (1996) Enzyme sensors for the detection of subnano-and milimolar concentrations. Development and application of biosensors. Analyst,in press.

    Google Scholar 

  • Raba, J. and Mottola, H.A. (1994) On-line enzymatic amplification by substrate cycling in a dual bioreactor with rotation and amperometric detection. Anal. Biochem. 220: 297–302.

    Article  PubMed  CAS  Google Scholar 

  • Rosen, I. and Rishpon, J. (1989) Alkaline phosphatase as a label for a heterogeneous immunoelectrochemical sensor. J Electroanal. Chem. 258: 27–39.

    Article  CAS  Google Scholar 

  • Ruzgas, T., Emneus, J., Gorton, L. and Marko-Varga, G. (1995) The development of a peroxidase biosensor for monitoring phenol and related aromatic compounds. Anal. Chinn. Acta 311: 245–253.

    Article  CAS  Google Scholar 

  • Scheller, E and Schubert, E (1989) Biosensoren. Akademie Verlag. Berlin.

    Google Scholar 

  • Scheller, E, Wollenberger, U., Schubert, F., Pfeiffer, D. and Bogdanovskaya, V.A. (1987) Amplification and switching by enzymes in biosensors. GBF Monographs 10: 39–49.

    CAS  Google Scholar 

  • Scheller, E, Schubert, E, Weigelt, D., Mohr, P. and Wollenberger, U. (1988) Molecular recognition and signal processing in biosensors. Makromolek. Chem. 17: 429–439.

    CAS  Google Scholar 

  • Scheller, E, Pfeiffer, D., Hintsche, R., Dransfeld, I. and Wollenberger, U. (1990) Analytical aspects of internal signal processing in biosensors. Ann. NYAcad. Sci. 613: 68–78.

    Article  CAS  Google Scholar 

  • Scheller, E.W., Schubert, E, Pfeiffer, D., Wollenberger, U., Renneberg, R., Hintsche, R. and Kühn, M. (1992) Fifteen years of biosensor research in Berlin-Buch. GBF Monographs 17: 3–10.

    CAS  Google Scholar 

  • Scheller, EW., Makower, A., Ghindilis, A.L., Bier, F.F., Förster, E., Wollenberger, U., Bauer, C.G., Micheel, B. Pfeiffer, D., Szeponik, J., Michael, N. and Kaden, H. (1995) Enzyme sensors for subnanomolar concentrations. In: ACS Symposium Series 613, Chapter 7, pp 70–81.

    Google Scholar 

  • Schubert, E, Kirstein, D., Schröder, K.L. and Scheller, E (1985) Enzyme electrodes with substrate and coenzyme amplification. Anal. Chico. Acta 169: 391–396.

    Article  CAS  Google Scholar 

  • Schubert, E, Kirstein, D., Scheller, E, Appelqvist, R., Gorton, L. and Johansson, G. (1986) Enzyme electrodes for L-glutamate using chemical redox mediators and enzymatic substrate amplification. Anal. Lett. 19: 1273–1288.

    Article  CAS  Google Scholar 

  • Schubert, E, Wollenberger, U., Scheller, E and Müller, H.G. (1990a) Artificially coupled enzyme reactions with immobilized enzymes: biological analogs and technical consequences. In: D. Wise, (ed.) Bioinstrumentation and Biosensors. Marcel Decker, New York.

    Google Scholar 

  • Schubert, E, Scheller, E and Krasteva, N. (1990b) Lactate-dehydrogenase-based biosensors for glyoxylate and NADH determination: A novel principle of analyte recycling. Electroanal. 2: 347–351.

    Article  CAS  Google Scholar 

  • Skladal, P. (1991) Mushroom tyrosinase-modified carbon paste electrode as amperometric bio-sensor for phenols. Coll. Czech. Chem. Comm. 56: 1427–1433.

    Article  CAS  Google Scholar 

  • Tang, H.T., Lunte, C.F., Halsall, H.B. and Heineman, W.R. (1988) p-Aminophenyl phosphate: An improved substrate for electrochemical immunoassays. Anal. Chim. Acta 214: 187–195.

    Google Scholar 

  • Tang, X. and Johansson, G. (1995) Enzyme electrode for amplification of NADINADH using glycerol dehydrogenase and diaphorase with amperometric detection. Anal. Lett. 28: 2595–2606.

    Article  CAS  Google Scholar 

  • Uchiyama, S., Hasebe, Y., Shimizu, H. and Ishihara, H. (1993) Enzyme-based catechol sensor-based on the cyclic reaction between catechol and 1,2-benzoquinone, using L-ascorbate and tyrosinase. Anal. Chim. Acta 276: 341–345.

    Article  CAS  Google Scholar 

  • Vidziunaite, R.A. and Kulys, J.J. (1985) Kinetic regularities of cyclic substrate conversion in enzyme membranes (russ). Liet. TSR Mokslu Akad. darbai See C2: 84–91.

    Google Scholar 

  • Wang, J. and Chen. Q. (1995a) Highly sensitive biosensing of phenolic compounds using bioaccumulation/chronoamperometry at a tyrosinase electrode. Electroanal. 7: 746–749.

    Article  CAS  Google Scholar 

  • Wang, J. and Chen, Q. (1995b) Micofabricated phenol biosensors based on screen printing of tyrosinase containing carbon ink. Anal. Lett. 28: 1131–1142.

    Article  CAS  Google Scholar 

  • Wang, J., Lin, Y. and Chen, Q. (1993a) Organic-phase biosensors based on entrapment of enzymes within poly(ester-sulfonic acid) coatings. Electroanal. 5: 23–28.

    Article  Google Scholar 

  • Wang, J., Lin, Y, Eremenko, A.V., Ghindilis, A.L. and Kurochkin, I.N. (1993b) A laccase electrode for organic-phase enzymatic assays. Anal. Lett. 26: 197–207.

    Article  Google Scholar 

  • Wasa, T., Akimoto, K. Yao, T. and Murao, S. (1984) Development of laccase membrane electrode by using carbon electrode impregnated with epoxy resin and its response characteristics. Nippon Kagaku Koishi 9: 1398–1403.

    Article  Google Scholar 

  • Wightman, R.M., Finnegan, J.M. and Pihel, K. (1995) Monitoring catecholamines at single cells. TRAC 14 (4): 154–158.

    CAS  Google Scholar 

  • Wollenberger, U., Schubert, E, Scheller, E, Danielsson, B. and Mosbach, K. (1987a) Coupled reactions with immobilized enzymes in biosensors. Studia biophys. 119: 167–170.

    CAS  Google Scholar 

  • Wollenberger, U., Schubert, F., Scheller, E, Danielsson, B. and Mosbach, K. (1987b) A biosensor for ADP with internal substrate amplification. Anal. Lett. 20: 657–668.

    Article  CAS  Google Scholar 

  • Wollenberger, U., Scheller, E, Pavlova, M., Müller, H.G., Risinger, L. and Gorton, L. (1989) Glutamate oxidase based biosensors. GBF Monographs 13: 33–36.

    CAS  Google Scholar 

  • Wollenberger, U., Schubert, E and Scheller, E (1992) Biosensor for sensitive phosphate detection. Sensor. Actuator. B7: 412–415.

    Article  Google Scholar 

  • Wollenberger, U., Schubert, E, Pfeiffer, D. and Scheller, F. (1993) Enhancing biosensor performance using multienzyme systems. TlBtech 11: 255–262.

    CAS  Google Scholar 

  • Wollenberger, U., Paeschke, M. and Hintsche, R. (1994) Interdigitated array electrodes for the determination of enzyme activites. Analyst 119: 1245–1249.

    Article  CAS  Google Scholar 

  • Wollenberger, U., Neumann, B. and Scheuer, E (1995) Quinoprotein glucose dehydrogenase modified carbon paste electrodes. Proc. Int. 6th Beijing Conference and Exhibition on Instrumental Analysis, Beijing F 201–202.

    Google Scholar 

  • Yamaguchi, S., Ozawa, S., Ikeda, T. and Senda, M. (1992) Sensitive amperometry of 4-aminophenol based on catalytic current involving enzymatic recycling with diaphorase and its application to alkaline phosphatase assay. Anal. Sci. 8: 87–88.

    Article  CAS  Google Scholar 

  • Yang, X., Pfeiffer, D., Johansson, G. and Scheller, F.W. (1991) Enzyme electrodes forADP/ATP with enhanced sensitivity due to chemical amplification and intermediate accumulation. Electroanal. 3: 659–663.

    Article  CAS  Google Scholar 

  • Yaropolov, A.I., Kharybin, A.N., Emneus, J., Marko-Varga, G. and Gorton, L. (1995) Flow-injection analysis of phenols at a graphite electrode modified with co-immobilized laccase and tyrosinase. Anal. Chim. Acta 308: 137–144.

    Article  CAS  Google Scholar 

  • Yao, T., Yamamoto, H. and Wasa, T. (1989) Chemical amplified enzyme electrodes by substrate recycling. Proceedings ISE-Meeting, Kyoto. Kodanasha, Tokyo, pp 1014–1015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Wollenberger, U., Lisdat, F., Scheller, F.W. (1997). Enzymatic substrate recycling electrodes. In: Scheller, F.W., Schubert, F., Fedrowitz, J. (eds) Frontiers in Biosensorics II. EXS, vol 81. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9045-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9045-8_4

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9884-3

  • Online ISBN: 978-3-0348-9045-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics