Skip to main content

Phenol-oxidizing enzymes: mechanisms and applications in biosensors

  • Chapter
  • First Online:
Frontiers in Biosensorics I

Part of the book series: Experientia Supplementum ((EXS,volume 80))

Summary

Phenolic compounds are widely distributed in nature. Enyzmes which catalyze their oxidation are monophenol monooxygenases, such as tyrosinases and laccases, and peroxidases. Their metabolic role includes the decomposition of natural complex aromatic polymers as well as polymerization of the oxidation products and the degradation of xenobiotics. Their catalytic properties and broad availability gained impact on the development of biosenors for both environmentally important pollutants and clinically relevant metabolites.

Mechanisms for the phenol-oxidizine enzymes tyrosinases, laccases, and peroxidases are reviewed and some examples for their use in the construction of phenol selective biosenors are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan, A.C. and Walker, J.R.I. (1988) The selective inhibition of catechol oxidases by salicyl- hydroxamine acid. Phytocemistry 27: 3075 - 3076.

    Article  CAS  Google Scholar 

  • Andersen, S.O. (1985) Sclerotization and tanning of the cuticle. In G.P. Kerkut and L.I. Gilbert (eds): Comparative Insect Physiology, Biochemistry, and Pharmacology, Vol. 3. Pergamon Press, New York, pp 59 - 74.

    Google Scholar 

  • Andersen, S.O. (1989a) Enzymatic activities in locust cuticle involved in sclerotization. Insect Biochem. 19: 59 - 67.

    Article  CAS  Google Scholar 

  • Andersen, S.O. (1989b) Enzymatic activities involved in incorporation of 7V-acetyldopamine into insect cuticle during sclerotization. Insect Biochem. 19: 375 - 382.

    Article  CAS  Google Scholar 

  • Andersen, S.O., Peter, M.G. and Roepstorff, P. (1996) Cuticular sclerotization in insects. Comp. Biochem. Physol. 113B: 689 - 705.

    Article  Google Scholar 

  • Andreasson, L.E. and Reinhammar, B. (1979) The mechanism of electron transfer in laccase catalyzed reactions. Biochim. Biophys. Acta 558: 145 - 156.

    Article  Google Scholar 

  • Anni, H. and Yonetani, T. (1992) Mechanism of action of peroxidases. In H. Siegel and A. Siegel (eds): Metal Ions in Biological Systems. Marcel Dekker, New York, pp 219 - 241.

    Google Scholar 

  • Aso, Y., Kramer, K.J., Hopkins, T.L. and Whetzel, S.Z. (1984) Properties of tyrosinase and DOPA quinone imine conversion factor from pharate pupal cuticle of Manduca sexta L. Insect Biochem. 14: 463 - 472.

    Article  CAS  Google Scholar 

  • Aspan, A., Huang, T.S., Cerenius, L. and Soderhall, K. (1995) c-DNA cloning of prophenoloxi- dase from the fresh-water crayfish Pacifastacus leniusculus and its activation. Proc. Natl. Acad. Sei. USA 92: 939 - 943.

    Article  CAS  Google Scholar 

  • Ator, M.A. and Ortiz de Montellano, PR. (1987) Protein control of prosthetic heme reactivity. Reaction of substrates with the heme edge of HRP. J. Biol. Chem. 262: 1542 - 1551.

    Article  CAS  PubMed  Google Scholar 

  • Barman, T.E. (1992) (ed) Enzyme Handbook, Vol. 1. Springer Verlag, Berlin, pp 234 - 235.

    Google Scholar 

  • Barrett, F.M. and Andersen, S.O. (1981) Phenoloxidases in larval cuticle of the blowfly, Calli- phora vicina. Insect Biochem. 11: 17 - 23.

    Article  CAS  Google Scholar 

  • Besombes, J.L., Cosnier, S., Labbe, P. and Reverdy, G. (1995) A biosensor as warning device for the detection of cyanide, chlorophenols, atrazine and carbamate pesticides. Anal. Chim. Acta 311: 255 — 263.

    Article  CAS  Google Scholar 

  • Bier, F.F., Ehrentreich-Förster, E., Bauer, C. and Scheller, F. (1996) High-sensitive competitive immunodetection of 2,4-dichlorophenoxyacetic acid using enzymatic amplification with electrochemical detection. Fres. J. Anal. Chem. 354: 861 - 865.

    CAS  Google Scholar 

  • Bonakdar, M., Vilechez, J.L. and Mottola, H.A. (1989) Bioamperometric sensor for phenol based on carbon paste electrodes. J. Electroanal. Chem. 354: 861 - 865.

    Google Scholar 

  • Cabanes, J., Chazarra, S. and Garcia-Carmona, F. (1994) Kojic acid, a cosmetic skin whitening agent, is a slow-binding inhbitor of catecholase activity of tyrosinase. J. Pharm. Pharmacol. 46: 982 - 985.

    Article  CAS  PubMed  Google Scholar 

  • Campanella, L., Beone, T., Sammartino, M.P. and Tomassetti, M. (1993) Determination of phenol in wastes and water using an enzyme sensor. Analyst 118: 979 - 986.

    Article  CAS  Google Scholar 

  • Cenas, N.K. and Kulys, J.J. (1988) Fermentativnuyi perenos electrona russ (Enzymatic electron transfer) Mokslas, Vilnius.

    Google Scholar 

  • Charalambidis, N.D., Bournazos, S.N., Zervas, C.G., Katsoris, P.G. and Marmaras, VJ. (1994) Glycosylation and adhesiveness differentiate larval Ceratitis capitata tyrosinases. Arch. Insect Biochem. Physiol. 27: 235 - 248.

    Article  CAS  Google Scholar 

  • Coche-Guerente, L., Cosnier, S. and Innocent, C. (1995) Poly(amphiphilic pyrrole)-PPO electrodes for organic-phase enzymatic assay. Anal. Lett. 28: 1005 - 1016.

    Article  CAS  Google Scholar 

  • Cory, J.G. and Frieden, E. (1967) Differential reactivites of tyrosine residues of proteins to tyrosinase. Biochemistry 6: 121 - 126.

    Article  CAS  PubMed  Google Scholar 

  • Dean, J.F.D. and Eriksson, K.-E.L. (1994) Laccase and the deposition of lignin. Holzforschung 48 (Suppl.): 21 - 33

    Article  CAS  Google Scholar 

  • Dennison, M.J., Hall, J.M. and Turner, A.P.F. (1995) Gas-phase microbiosensor for monitoring phenol vapor at ppb levels. Anal. Chem. 67: 3922 - 3927.

    Article  CAS  Google Scholar 

  • Eremenko, A.F., Makower, A., Wen, J., Ruger, P. and Scheller, F.W. (1995 a) Biosensor based on an enzyme modified electrode for highly-sensitive measurement of polyphenols. Biosens. Bioelectron. 10: 717 - 722.

    Article  CAS  PubMed  Google Scholar 

  • Eremenko, A.F., Makower, A. and Scheller, F.W. (1995 b) Measurement of nanomolar diphenols by substrate recycling coupled to a pH-sensitive electrode. Fresenius Z. Anal. Chem. 351: 729 - 731.

    Article  CAS  Google Scholar 

  • Everse, J., Everse, K.E. and Grisham, M.B. (eds) (1991) Peroxidases in Chemistry and Biology, Vol. 1 and 2. CRC Press, Boca Raton.

    Google Scholar 

  • Ghindilis, A.L., Makower, A. and Scheller, F.W. (1995) Nanomolar determination of the ferrocene derivatives using a recycling enzyme electrode - development of a redox label immunoassay. Analytical Lett. 28: 1 - 11.

    Article  CAS  Google Scholar 

  • Gorton, L. (1995) Carbon paste electrodes chemically modified with enzymes, tissues, and cells. A review. Electroanal. 7: 23 - 45.

    Article  CAS  Google Scholar 

  • Gôtz, P. and Boman, H.G. (1985) Insect immunity. ln\ G.A. Kerkut and L.I. Gilbert (eds): Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 3. Pergamon Press, Oxfod,pp 453 - 485.

    Google Scholar 

  • Gross, A.J. and Sizer, I.W. (1959) The oxidation of tyramine, tyrosine, and related compounds by peroxidase. J. Biol. Chem. 234:1611 -1614.

    Google Scholar 

  • Hall, G.F., Best, D.A. and Turner, A.P.F. (1988) Amperometric enzyme electrode for the determination of phenols in chloroform. Enzyme Microb. Technol. 10:543 -546.

    Google Scholar 

  • Hasebe, Y., Hirano, T. and Uchiyama, S. (1995) Determination of catecholamines and uric acid in biological fluids without pretreatment, using chemically amplified biosensors. Sensor. Actuator. B 24-25: 94 - 97.

    Article  Google Scholar 

  • Hearing, VJ. and Jimenez, M. (1989) Analysis of mammalian pigmentation at the molecular level. Pigment Cell Res. 2: 75 - 85.

    Article  CAS  PubMed  Google Scholar 

  • Inagaki, H., Bessho, Y., Koga, A. and Hori, H. (1994) Expression of the tyrosinase-encoding gene in a colorless melanophore mutant of the medaka fish, Oryzias latipes. Gene 150: 319 - 324.

    CAS  PubMed  Google Scholar 

  • Inagaki, H., Bessho, Y., Koga, A. and Hori, H. (1994) Expression of the tyrosinase-encoding gene in a colorless melanophore mutant of the medaka fish, Oryzias latipes. Gene 150: 319 - 324.

    CAS  PubMed  Google Scholar 

  • Jin, W., Wollenberger, U., Bier, F.F., Makower, A. and Scheller, F. (1996) Electron transfer between cytochrome c and laccase. Bioelectrochem. Bioenerg. 39: 221 - 225.

    Article  CAS  Google Scholar 

  • Kahn, V (1985) Tropolone - a compound that can aid in differentiating between tyrosinase and peroxidase. Phytochemistry 24: 915 - 920.

    Article  CAS  Google Scholar 

  • Kahn, V and Andrawis, A. (1985) Inhibition of mushroom tyrosinase by tropolone. Phytochemistry 24: 905 - 908.

    Article  CAS  Google Scholar 

  • Kahn, V and Andrawis, A. (1985) Inhibition of mushroom tyrosinase by tropolone. Phytochemistry 24: 905 - 908.

    Article  CAS  Google Scholar 

  • Karhunen, E., Niku-Paavola, M.L., Viikari, L., Haltia, T., van der Meer, R.A. and Duine, J.A. (1990) A novel combination of prosthetic groups in a fungal laccase; PQQ and two copper atoms. FEBS Lett. 267: 6 - 8.

    Article  CAS  PubMed  Google Scholar 

  • Katagiri, N., Tsutsumi, Y. and Nishida, T. (1995) Correlation of brightening with cumulative enzyme-activity related to lignin biodégradation during biobleaching of kraft pulp by white-rot fungi in the solid-state fermentation system. Appl. Environm. Microbiol. 61: 617 - 622.

    Article  CAS  Google Scholar 

  • Kawai, S., Umezawa, T., Shimada, M. and Higuchi, T. (1988) Aromatic ring cleavage of 4,6- di-teri-butylguaiacol, a phenolic lignin model compound, by laccase of Coriolus versicolor. FEBS Lett. 236: 309 - 311.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi, T., Urabe, K., Winder, A. Jimenez-Cervantes, C., Imokawa, G., Brewington, T., Solano, F., Garcia-Borron, J.C. and Hearing, VJ. (1994) Tyrosinase-related protein-1 (Trpl) functions as a DHICA oxidase in melanin biosynthesis. EMBO J 13: 5818 - 5825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotte, H., Grundig, B., Vorlop, K.D., Strehlitz, B. and Stottmeister, U. (1995) Methylphenazo- nium-modified enzyme sensor-based on polymer thick-films for subnanomolar detection of phenols. Anal. Chem. 67: 65 - 70.

    Article  CAS  Google Scholar 

  • Kulys, J. and Schmid, R. (1990) A sensitive enzyme electrode for phenol monitoring. Anal. Lett. 23: 589 - 597.

    Article  CAS  Google Scholar 

  • Lerch, K. (1978) Amino acid sequence of tyrosinase from Neurospora crassa. Proc. Natl. Acad. Sci. USA 75: 3635 - 3639.

    Article  CAS  PubMed  Google Scholar 

  • Lerch, K. (1983) Neurospora tyrosinase: Structural, spectroscopic and catalytic properties. Mol. Cell. Biochem. 52: 125 - 138.

    Article  CAS  PubMed  Google Scholar 

  • Macholan, L. (1990) Phenol-sensitive enzyme electrode with substrate recycling for quantification of certain inhibitory aromatic acids and thio compounds. Coll Czech. Chem. Com- mun. 55: 2152 - 2159.

    Article  CAS  Google Scholar 

  • Macholan, L. and Schanel, L. (1977) Enzyme electrode with immobilized polyphenol oxidase for determination of phenolic substrates. Coll. Czech. Chem. Commun. 42: 3667 - 3675.

    Article  CAS  Google Scholar 

  • Maddaluno, J.F. and Faull, K.F. (1988) Inhibition of mushroom tyrosinase by 3-amino-L-tyro- sine: Molecular probing of the active site of the enzyme. Experientia 44: 885 - 887.

    Article  CAS  PubMed  Google Scholar 

  • Maidan, R. and Heller, A. (1992) Elimination of electrooxidizable interferant-produced currents in amperometric biosensors. Anal. Chem. 64: 2889 - 2896.

    Article  CAS  PubMed  Google Scholar 

  • Makower, A., Eremenko, A.V, Streffer, K., Wollenberger, U. and Scheller, F.W. (1996) Tyro- sinase-glucose dehydrogenase substrate recycling biosensor. Highly sensitive measurement of phenolic compounds. J. Chem. Tech. Biotech. 65: 39 - 44.

    Article  CAS  Google Scholar 

  • Mayer, A.M. (1987) Polyphenoloxidase in plants - recent progress. Phytochemistry 26:11 -20.

    Google Scholar 

  • Mayer, A.M. and Harel, E. (1979) Polyphenoloxidases in plants. Phytochemistry 18: 193 - 215.

    Article  CAS  Google Scholar 

  • McEldoon, J.P, Pokora, A.R. and Dordick, J.S. (1995) Lignin peroxidase-type activity of soybean peroxidase. Enzyme Microb. Technol. 17: 359 - 365.

    Article  CAS  Google Scholar 

  • Messerschmidt, A. and Huber, L. (1990) The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin. Modelling and structural relationship. Eur. J. Biochem. 187: 341 - 352.

    Article  CAS  PubMed  Google Scholar 

  • Miki, K., Kondo, R., Renganathan, V, Mayfield, M.B. and Gold, M.H. (1988) Mechanism of aromatic ring cleavage of a /3-biphenylyl ether dimer catalyzed by lignin peroxidase of Phanerochaete chrysospori. Biochemistry 27: 4787 - 4794.

    Article  CAS  Google Scholar 

  • Morgan, T.D., Thomas, B.R., Yonekura, M., Czapla, T.H., Kramer, K.J. and Hopkins, T.L. (1990) Soluble tyrosinase from pharate pupal integument of the tobacco hornworm, Manduca sexta (L.). Insect Biochem. 20: 251 - 260.

    Article  CAS  Google Scholar 

  • Morooka, Y., Fujisawa, K. and Kitajima, N. (1995) Transition-metal peroxo complexes relevant to metalloproteins. PureAppl. Chem. 67: 241 - 248.

    Article  CAS  Google Scholar 

  • Morrison, R., Mason, K. and Frost-Mason, S. (1994) A cladistic analysis of the evolutionary relationships of the members of the tyrosinase gene family using sequence dat. Pigm. Cell Res. 7: 388 - 393.

    Article  CAS  Google Scholar 

  • Murao, S., Hinode, Y., Matsumura, E., Numata, A., Kawai, K. Ohishi, H., Jin, H., Oyama, H. and Shin, T. (1992) A novel laccase inhibitor, TV-hydroxyglycine, produced by Penicillium citrinum YH-31. Biosci. Biotech. Biochem. 56: 987 - 988.

    CAS  Google Scholar 

  • Onnerfjord, P., Emneus, J., Marko-Varga, G. and Gorton, L. (1995) Tyrosinase graphite-epoxy based composite electrodes for detection of phenols. Biosens. Bioelectron. 10: 607 - 619.

    Article  Google Scholar 

  • Ortega, F., Dominguez, E., Burestedt, E., Emneus, J., Gorton, L. and Marko-Varga, G. (1994) Phenol oxidase-based biosensors as selective detection units in column liquid chromatography for the determination of phenolic compounds. J. Chromatogr. 675: 65 - 78.

    Article  CAS  Google Scholar 

  • Ortega, F., Dominguez, E., Jonsson-Pettersson, G. and Gorton, L. (1993) Amperometric biosensor for the determination of phenolic compounds using a tyrosinase graphite electrode in a flow injection system. J. Biotech. 31: 289 - 300.

    Article  CAS  Google Scholar 

  • Pantano, P. and Kuhr, W.G. (1995) Enzyme-modified microelectrodes for in vivo neurochemical measurements. Electroanal. 1:405 -416.

    Google Scholar 

  • Pelaez, F., Martinez, M.J. and Martinez, A.T. (1995) Screening of 68 species of basidiomycetes for enzymes involved in lignin degradation. Mycol. Res. 99: 37 - 42.

    Article  Google Scholar 

  • Peter, M.G. (1993) Die molekulare Architektur des Exoskeletts von Insekten. Chem. uns. Zeit 27: 189 - 197.

    Article  CAS  Google Scholar 

  • Peter, M.G. and Merz, A. (1995) Stereoselective benzylic deprotonation in the enzymatic rearrangement of TV-acetyldopamine derived o-quinone to the /?-quinone methide. Tetrahedron Asymmetry 6: 839 - 842.

    Article  CAS  Google Scholar 

  • Pfeiffer, D., Wollenberger, U., Makower, A., Scheller, F., Risinger, L. and Johansson, G. (1990) Amperometric amino acid electrodes. Electroanal. 2: 517 - 523.

    Article  CAS  Google Scholar 

  • Poulos, T.L. (1993) Peroxidases. Current Opinion Biotech. 4: 484 - 489.

    Article  CAS  Google Scholar 

  • Poulos, T.L., Freer, S.T., Alden, R.A., Edwards, S.L., Skoglund, U., Takio, K., Eriksson, B., Yuong, N.-H., Yonetani, T. and Kraut, J. (1980) The crystal structure of cytochrome c peroxidase. J. Biol. Chem. 255: 575 - 580.

    CAS  PubMed  Google Scholar 

  • Prota, G. (1992) Melanins and Melanogenesis. Academic Press, London.

    Google Scholar 

  • Prota, G. (1995) The chemistry of melanins and melanogenesis. Progr. Chem. Org. Nat. Prod. 64: 93 - 148.

    CAS  Google Scholar 

  • Prota, G., Ortonne, J.P, Voulot, C., Khatchadourian, C., Nardi, G. and Palumbo, A. (1981) Occurrence and properties of tyrosinase in the ejected ink of Cephalopods. Comp. Biochem. Physiol. 68B: 415 - 419.

    Google Scholar 

  • Raghukumar, C., Raghukumar, S., Chinnaraj, A., Chandramohan, D., Dsouza, T.M. and Reddy, C.A. (1994) Laccase and other lignocellulose modifying enzymes of marine fungi isolated from the coast of India. Bot. Marina 37: 515 - 523.

    Article  CAS  Google Scholar 

  • Reinhammar, B.R.M. (1972) Oxidation-reduction potenials of the electron acceptors in laceases and stellacyanin. Biochim, Biophys. Acta 275: 245 - 259.

    Article  CAS  Google Scholar 

  • Renneberg, R., Pfeiffer, D., Scheller, F. and Jánchen, M. (1982) Enzyme sequence and competition electrodes based on immobilized glucose oxidase, peroxidase and catalase. Anal. Chim. Acta 134: 359 - 364.

    Article  CAS  Google Scholar 

  • Riedel, K., Hensel, J., Rothe, S., Neumann, B. and Scheller, F. (1993) Microbial sensors for determination of aromatics and their chloro derivatives. Appl. Microbiol. Biotechnol. 502 - 506.

    Google Scholar 

  • Rivas, G.A. and Solis, VM. (1994). Electrochemical quantification of phenol using mushroom tyrosinase - determination of the kinetic parameters of the enzyme. Electroanalysis 6, 1136 - 1140.

    Article  CAS  Google Scholar 

  • Ruzgas, T. Emneus, J., Gorton, L. and Marko-Varga, G. (1995) The development of a peroxidase biosensor for monitoring phenol and related aromatic compound. Anal. Chim. Acta 311: 245 - 253.

    CAS  Google Scholar 

  • Ryan, O., Smyth, M.R. and O’Fagain, C. (1994) Horseradish peroxidase: the analyst’s friend. Essay in Biochemistry 28: 129 — 146.

    CAS  Google Scholar 

  • Sakurai, T. (1992) Kinetics of electron transfer between cytochrome-c and laccase. Biochemistry 31: 9844 - 9847.

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Ferrer,Á., Rodríguez-López, J.N., García-Cánovas, F. and García-Carmona, F. (1995) Tyrosinase: a comprehensive review of its mechanism. Biochim. Biophys. Acta. 1247:1 -11.

    Google Scholar 

  • Scheller, F. and Schubert, F. (1992) Biosensors, Elsevier, Amsterdam.

    Google Scholar 

  • Scheller, F., Wollenberger, U., Schubert, F., Pfeiffer, D. and Bogdanovskaya, VA. (1987) Amplification and switching by enzymes in biosensors. GBF Monographs 10: 39 - 49.

    CAS  Google Scholar 

  • Skladal, P. (1991) Mushroom tyrosinase-modified carbon paste electrode as an amperometric biosensor for phenols. Coll. Czech. Chem. Commun. 56: 1427 - 1433.

    Article  CAS  Google Scholar 

  • Smit, M.H. and Rechnitz, G.A. (1993) Toxin detection using a tyrosinase-coupled oxygen electrode. Anal. Chem. 65: 380 - 385.

    Article  CAS  PubMed  Google Scholar 

  • Solomon, E.I., Baldwin, M.J. and Lowery, M.D. (1992) Electronic structures of active sites in copper proteins. Chem. Rev. 92: 521 - 542.

    Article  CAS  Google Scholar 

  • Stancik, L., Macholan, L. and Scheller, F. (1995) Biosensing of tyrosinase inhibitors in nonaqueous solvents. Electroanal. 7: 649 - 651.

    Article  CAS  Google Scholar 

  • Thomas, B.R., Yonekura, M., Morgan, T.D., Czapla, T.H., Hopkins, T.L. and Kramer, K.J. (1989) A trypsin-solubilized laccase from pharate pupal integument of the tobacco hornworm, Manduca sexta. Insect Biochem. 19:611 -622.

    Google Scholar 

  • Thurston, C.F. (1994) The structure and function of fungal laceases. Microbiology 140: 19 - 26.

    Article  CAS  Google Scholar 

  • Todorova, M., Werner, C. and Hesse, M. (1994) Enzymatic phenol oxidation and polymerization of the spermine alkaloid aphelandrine. Phytochemistry 37:125 1 -1256.

    Google Scholar 

  • Uchiyama, S., Tamata, M., Tofuku, Y. and Suzuki, S. (1988) A catechol electrode based on spinach leaves. Anal. Chim. Acta 208: 287 - 290.

    Article  CAS  Google Scholar 

  • Umezawa, T. and Higuchi, T. (1985) A novel C a -Cp cleavage of a (3-0-4 lignin model dimer with rearrangement of the /3-arygl group by Phaneroachaete Chrysosporium. FEBS Lett. 192: 147 - 150.

    Article  CAS  Google Scholar 

  • Umezawa, T. and Higuchi, T. (1989) Cleavages of aromatic ring and (5-0-4 bond of synthetic lignin (DHP) by lignin peroxidase. FEBS Lett. 242: 325 - 329.

    Article  CAS  PubMed  Google Scholar 

  • Walker, J.R.L. and McCallion, R.F. (1980) The selective inhibition of ortho- and para-diphenol oxidases. Phytochemistry 19: 373 - 377.

    Article  CAS  Google Scholar 

  • Wang, J., and Chen, Q. (1995 a) Highly sensitive biosensing of phenolic compounds using bio- accumulation/chronoamperometry at a tyrosinase electrode. Electroanal. 7: 746 - 749.

    Article  CAS  Google Scholar 

  • Wang, J., and Chen, Q. (1995 b) Microfabricated phenol biosensors based on screen printing of tyrosinase containing carbon ink. Anal. Lett. 28:1131 -1142.

    Article  CAS  Google Scholar 

  • Wang, J., and Lin, M.S. (1988) Mixed plant tissue-carbon paste bioelectrode. Anal. Chem. 60: 1545 - 1548.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Lin, Y., Eremenko, A.V, Ghindilis, A.L. and Kurochkin, I.N. (1993 a) A laccase electrode for organic-phase enzymatic assays. Anal. Lett. 26: 197 - 207.

    Article  Google Scholar 

  • Wang, J., Naser, N. and Wollenberger, U. (1993 b) Use of tyrosinase for enzymatic elimination of acetaminophen interference in amperometric sensing. Anal. Chim. Acta 285: 19 - 24.

    Article  Google Scholar 

  • Wang, J., Fang, L., and Lopez, D. (1994) Amperometric biosensor for phenols based on a tyrosinase-graphite-epoxy biocomposite. Analyst 119: 455 - 458.

    Article  CAS  PubMed  Google Scholar 

  • Wasa, T., Akimoto, K., Yao, T. and Murao, S. (1984) Development of laccase membrane electrode by using carbon electrode impregnated with epoxy resin and is response characteristics. Nippon Kagaku Koishi 9: 1398 - 1403.

    Article  Google Scholar 

  • Wilcox, D.E., Porras, A.G., Hwang, Y.T., Lerch, K., Winkler, M.E. and Solomon, E.I. (1985) Substrate analogue binding to the coupled binuclear copper binding site in tyrosinase. J.Am. Chem. Soc. 107: 4015 - 4027.

    Article  CAS  Google Scholar 

  • Wollenberger, U., Scheller, F., Pfeiffer, D., Bogdanovskaya, VA., Tarasevich, M.R. and Hanke, G. (1986) Laccase/glucose oxidase electrode for determination of glucose. Anal. Chim. Acta 187: 39 - 45.

    Article  CAS  Google Scholar 

  • Wollenberger, U., Schubert, F., Pfeiffer, D. and Scheller, F. (1993) Enhancing biosensor performance using multienzyme systems. Trends in Biotechnology 11: 255 - 262.

    Article  CAS  PubMed  Google Scholar 

  • Wood, B.J.B. and Ingraham, L.L. (1965) Labeleld tyrosinase from labelled substrate. Nature 205: 291 - 292.

    Article  CAS  PubMed  Google Scholar 

  • Yaropolov, A.I., Kharybin, A.N., Emneus, J., Marko-Varga, G. and Gorton, L. (1995) Flow- injection analysis of phenols at a graphite electrode modified with co-immobilized laccase and tyrosinase. Anal. Chim. Acta 308: 137 - 144.

    Article  CAS  Google Scholar 

  • Yaropolov, A.I., Skorobogatko, O.V, Vartanov, S.S. and Varfolomeyev, S.D. (1994) Laccase - properteis, catalytic mechanism, and applicability. Appl. Biochem. Biotechnol. 49: 257 - 280.

    Article  CAS  Google Scholar 

  • Yasunobu, K.T., Peterson, E.W and Mason, H.S. (1959) The oxidation of tyrosine-containing peptides by tyrosinase. J. Biol. Chem. 234: 3291 - 3295.

    Article  CAS  PubMed  Google Scholar 

  • Yurkow, E.J. and Laskin, J.D. (1989) Purification of tyrosinase to homogeneity based on its resistance to sodium dodecyl sulfate proteinase-K digestion. Arch. Biochem. Biophys. 275: 122 - 129.

    Article  CAS  PubMed  Google Scholar 

  • Zollner, H. (1993) Handbook of Enzyme Inhibitors, Part A. VCH, Weinheim, pp 367 - 368.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Birkhäuser Verlag

About this chapter

Cite this chapter

Peter, M.G., Wollenberger, U. (1997). Phenol-oxidizing enzymes: mechanisms and applications in biosensors. In: Scheller, F.W., Schubert, F., Fedrowitz, J. (eds) Frontiers in Biosensorics I. Experientia Supplementum, vol 80. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-9043-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9043-4_5

  • Published:

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9883-6

  • Online ISBN: 978-3-0348-9043-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics