Skip to main content

Biomimetic recognition elements for sensor applications

  • Chapter
  • First Online:
Frontiers in Biosensorics I

Part of the book series: Experientia Supplementum ((EXS,volume 80))

Summary

Ethanol and other alcohols with low molecular mass, glucose and creatinine are the analytes and/or substrates which have to be most frequently determined to obtain analytical informations in a variety of different process. The extensive literature on the development of biosensors is indicative of the interest in these sensors. In addition to enzyme-coupled recognition in biosensors, chemical host-guest interactions based on synthetic hosts are currently being investigated. Such a research project has applied an optical ethanol sensor to monitor ethanol generation in a bioreactor continuously. In this chapter, some examples of the state-of-the-art and recent results of these research projects are presented. Difficulties encountered in coupling a transducer to the synthetic host-guest recognition process, and in two-phase systems are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aoyama, Y. (1993) Molecular recognition of sugars. Trends Anal. Chem. 12: 23–28.

    Article  CAS  Google Scholar 

  • Aoyama, Y., Tanaka, Y. and Sugahara, S. (1989) Molecular Recognition. 5. Molecular Recognition of Sugars via Hydrogen-Bonding Interaction with a Synthetic Polyhydroxy Macrocycle. J.Am. Chem. Soc. 111: 5397–5404.

    Article  CAS  Google Scholar 

  • Auterhoff, H., Knabe, J. and Höltje, H.-D. (1991) Lehrbuch der Pharmazeutischen Chemie. Wiss. Verlagsgesellschaft mbH, Stuttgart, pp 320–323.

    Google Scholar 

  • Bakker, E., (1993) Die Bedeutung von Phasentransfergleichgewichten fĂĽr die Funktionsweise von ionenselektiven FlĂĽssigmembranoptoden und -elektroden. PhD Thesis Swiss Federal Institute of Technology (ETHZ), ZĂĽrich, Nr. 10229.

    Google Scholar 

  • Bartels, H. and Cikes, M. (1969) Ueber Chromogene der Kreatininbestimmung nach JaffĂ©. Clin. Chim. Acta 26: 1–10

    Article  CAS  PubMed  Google Scholar 

  • Behringer, C., Lehmann, B., Haug, J.-P., Seiler, K., Morf, W.E., Hartmann, K. and Simon, W. (1990) Anion selectivities of trifluoroacetophenone derivatives as neutral ionophores in solvent-polymeric membranes. Anal. Chim. Acta 233: 41–47.

    Article  CAS  Google Scholar 

  • Bell, T.W. and Liu, J.H. (1988) Hexagonal Lattice Hosts for Urea. A New Series of Designed Heterocyclic Receptors. J. Am. Chem. Soc. 110: 3673–3674.

    Article  CAS  Google Scholar 

  • Bell, T.W., Hou, Z., Luo, Y., Drew, M.G.B., Chapoteau, E., Czech, B.P. and Kumar, A. (1995) Detection of Creatinine by a Designer Receptor. Science 269: 671–674.

    Article  CAS  PubMed  Google Scholar 

  • Böeseken, J. (1949) The Use of Boric Acid for the Determination of the Configuration of Carbohydrates. Adv. Carbohydr. Chem. 4: 189–210.

    Google Scholar 

  • Bonnichsen, R.K. and Theorell, H. (1951) An enzymatic method for the microdetermination of ethanol. Scand. J. Lab. Invest. 3: 58–62.

    Article  CAS  Google Scholar 

  • Born, M. (1920) Volumen und Hydrationswärme der Ionen. Z. Physik 1: 45–48.

    Article  CAS  Google Scholar 

  • Brookhaven National Laboratory, Department of Energy, Upton, N.Y., USA.

    Google Scholar 

  • BĂĽhlmann, P. (1993) Molecular Recognition of Creatinine. Thesis Swiss Federal Institute of Technology (ETHZ), ZĂĽrich, Nr. 10066.

    Google Scholar 

  • BĂĽhlmann, P. and Simon, W. (1993) Neutral Hosts for the Complexation of Creatinine. Tetrahedron 49: 7627–7636.

    Article  Google Scholar 

  • Butler, A.R. and Glidewell, C.J. (1985) Creatinine: an Examination of its Structure and Some of its Reactions by Synergistic Use of MNDO Calculations and Nuclear Magnetic Resonance Spectroscopy. J. Chem. Soc. Perkin Trans. II: 1465–1467.

    Article  Google Scholar 

  • Dean, J. A. ( 1979 Lange’s Handbuch of Chemistry, 12th edn. McGraw-Hill, New York.

    Google Scholar 

  • Fersht, A. (1984) Enzyme Structure and Mechanism. W.H. Freeman and Comp., New York.

    Google Scholar 

  • Forschungszentrum Karlsruhe (1995), Technik und Umwelt, Nachrichten 1.

    Google Scholar 

  • Freiner, D., Kunz, R., Citterio, D., Spichiger, U.E. and Gale, M. (1995) Integrated optical sensors based on refractometry of ion-selective membranes. Sensor. Actuator. B 29: 277–285.

    Article  CAS  Google Scholar 

  • Frey-Wyssling, A. (1938) Submikroskopische Morphologie des Protoplasmas and seiner Derivate. Burnträger, Berlin, pp 112–119.

    Google Scholar 

  • Gauglitz, G., Brecht, A. and Kraus, G. (1995) Interferometric biochemical and chemical sensors. In: A.V Scheggi (ed.) Chemical, Biochemical, and Environmental Fiber Sensors VII., Proc. SPIE 2508, 1995, pp 41–48.

    Chapter  Google Scholar 

  • Gilmartin, M.A.T. and Hart. J.P. (1995) Sensing With Chemically and Biologically Modified Carbon Electrodes, A Review. Analyst 120: 1029–1045.

    Article  CAS  PubMed  Google Scholar 

  • Gorton, L., Csöregi, E., Dominguez, E., Emneus, J., Jönsson-Pettersson, G., Marko-Varga, G. and Persson, B. (1991) Selective detection in flow analysis based on the combination of immobilized enzymes and chemically modified electrodes. Anal. Chim. Acta 250: 203–248.

    Article  CAS  Google Scholar 

  • Haug, J.-P. (1993) Einsatz von lipophilen Boronsäuren in Optoden: Ein Ansatz zur Realisierung eines nicht enzymatischen Glucose-Sensors. PhD Thesis Swiss Federal Institute of Technology (ETHZ), ZĂĽrich, Nr. 10230.

    Google Scholar 

  • Helrich, K. (1990) Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed, vol. 2. Association of Official Analytical Chemists, Arlington, Virginia, p 739.

    Google Scholar 

  • Henry, J.B. (1991) Clinical Diagnosis & Management by Laboratory Methods. W.B. Saunders Comp., Philadelphia.

    Google Scholar 

  • Holy, P., Morf, W.E., Seiler, K., Simon, W. and Vigneron J.-P. (1990) Enantioselective Optode Membranes with Enantiomer Selectivity for (R)- and (S)-l-Phenylethylammonium ions. Helv. Chim. Acta 73: 1171–1181.

    Article  CAS  Google Scholar 

  • Holzer, H. and Sölig, H.D. (1962) Bestimmung von L-Lactat, L-Malat, L-Glutamat and Aethylalkohol im enzymatisch-optischen Test mit Hilfe des DPN-Analogen 3-Acetyl-Pyri- din-DPN. Biochem. Z. 336: 201–214.

    CAS  PubMed  Google Scholar 

  • Israelachvili, J. (1992) Intermolecular & Surface Forces. Academic Press, London.

    Google Scholar 

  • Kenyon, G.L. and Rowley, G.L. (1971) Tautomeric Preferences among Glycocyamidines. J.Am. Chem. Soc. 93: 5552.

    Article  CAS  Google Scholar 

  • Kovar, K.-A. (1972) Meisenheimer-Komplexe. Pharmazie in unserer Zeit 1: 17–20.

    Article  CAS  Google Scholar 

  • Krantz, J.C. Jr., Carr, C.J. and Beck, F.F. (1936) A Further Study of the Effect of Sugar Alcohols and Their Anhydrides on the Dissociation of Boric Acid. J. Phys. Chem. 40: 927–931.

    Article  CAS  Google Scholar 

  • Kuratli, M. (1993) Beitrag zur Entwicklung von optischen chemischen Sensoren. Organischchemische Reaktionen als Erkennungsprozesse. PhD Thesis Swiss Federal Institute of Technology (ETHZ), ZĂĽrich, No 10380.

    Google Scholar 

  • Kvassman, J., Laisson, A. and Petterson, G. (1981) Env. J. Biochem. 114: 555–563.

    CAS  Google Scholar 

  • Landau, L.D. and Lifshitz, E.M. ( 1963, 1984) Electrodynamics of Continuous Media, vol. 8, 2nd edn. Pergamon, Oxford.

    Google Scholar 

  • Lindenmann, B.A. (1989) Beitrag zur Entwicklung eines neuartigen Glucosesensors auf der Basis von PVC-Fliissigmembranen mit lipophilen Boronsäuren als substratselektiven Carriern. PhD Thesis Swiss Federal Institute of Technology (ETHZ), ZĂĽrich, Nr. 8957.

    Google Scholar 

  • Makkee, M., Kieboom, A.P.G. and van Bekkum, H. (1985) Studies on borate esters III. Borate esters of D-mannitol, D-glucitol, D-fructose and D-glucose in water. Recl. Trav. Chim. Pays- Bas 104: 230–235.

    Article  CAS  Google Scholar 

  • Mazurek, M. and Perlin, A.S. (1963) Borate Complexing by Five-Membered-Ring vic-Diols. Can. J. Chem. 41: 2403–2411.

    CAS  Google Scholar 

  • Meyerhoff, M.E., Pretsch, E., Welti, D.H., and Simon, W. (1987) Role of Trifluoroacetophenone Solvents and Quarternary Ammonium Salts in Carbonate-Selective Liquid Membrane Electrodes. Anal. Chem. 59: 144–150.

    Article  CAS  Google Scholar 

  • Pauling, L. and Coray, R.B. (1954) The Configuration of Polypeptide Chains in Proteins. Fortschr. Chem. org. Naturstoffe 11: 180–239.

    CAS  Google Scholar 

  • Proceedings of 3rd EUROPT(R)ODE96 in ZĂĽrich, Switzerland (1996). Sensor. Actuator. B, Elsevier, Amsterdam.

    Google Scholar 

  • Rapp, M., Moss, D.A., Reichert, J. and Ache, H.J. (1995) Acoustoelectric Immunosensor Based on Surface Transverse Waves for in Situ Measurements in Water. Proceedings of the 7th International Conference on Solid-State Sensor. Actuator, pp 538–540.

    Google Scholar 

  • Santucci, L. (1983) Hydrolytic cleavage of triphenylboroxin in cyclohexane medium. Gazz. Chim.Ital. 113: 515.

    CAS  Google Scholar 

  • Seiler, K., Wang, K., Kuratli, M. and Simon, W. (1991) Development of an ethanol-selective optode membrane based on a reversible chemical recognition process. Anal. Chim. Acta. 244: 151–160.

    Article  CAS  Google Scholar 

  • Spichiger, U.E. (1989) A Self consistent Set of Reference Values. PhD Thesis Swiss Federal Institute of Technology (ETHZ), ZĂĽrich, Nr. 8830.

    Google Scholar 

  • Spichiger, U.E. (1994) Chemical Sensors and Biosensors for Medical and Biological Applications: An area of Analytical Chemistry. Habilitation Thesis, Swiss Federal Institute of Technology (ETH), ZĂĽrich, Switzerland.

    Google Scholar 

  • Spichiger, U.E., Kuratli, M. and Simon, W. (1992) ETH 6022: An Artificial Enzyme? A Comparison Between Enzymatic and Chemical Recognition for Sensing Ethanol. Biosensors Bioelectron. 7: 715–723.

    Article  CAS  Google Scholar 

  • Spichiger, U.E., Freiner, D., Bakker, E., Rosatzin, T. and Simon, W. (1993 a) Optodes in Clinical Chemistry: Potential and Limitations. Sensor. Actuator. B 11: 263–271.

    Article  CAS  Google Scholar 

  • Spichiger, U.E., Simon, W, Bakker, E., Lerchi, M., BĂĽhlmann, P., Haug, J.-R, Kuratli, M., Ozawa, S. and West, S. (1993 b) Optical Sensors Based on Neutral Carriers. Sensor. Actuator. 11: 1–8.

    Article  CAS  Google Scholar 

  • Spichiger, U.E., Citterio, D. and Bott, M. (1995) Analyte-selective optodes membranes and optical evaluation techniques: characterization of response behaviour by ATR measurements. In: A.V Scheggi (ed.) Chemical, Biochemical, and Environmental Fiber Sensors VII, Proc. SPIE 2508, 1995, pp 179–189.

    Chapter  Google Scholar 

  • Spiro, T.G. (1983) Zinc enzymes. John Wiley & Sons, New York, pp 123–152.

    Google Scholar 

  • Stryer, L. (1995) Biochemistry. W.H. Freeman and Comp., New York.

    Google Scholar 

  • Sybyl, Software package Version 6.1 (August 1994). Tripos Inc., St. Louis, Missouri 63: 144–2913.

    Google Scholar 

  • Wang, K., Seiler, K., Haug, J.-R, Lehmann, B., West, S., Hartmann, K. and Simon, W. (1991) Hydration of Trifluoroacetophenones as the Basis for an Optical Humidity Sensor. Anal. Chem. 63: 970–974.

    Article  CAS  Google Scholar 

  • Watson, J.D. and Crick, F.H.C. (1953) Molecular Structure of Nucleic Acid. Nature 171:737 f.

    Article  CAS  PubMed  Google Scholar 

  • West, S.J., Ozawa, S., Seiler, K., Tan, S.S.S. and Simon, W. (1992) Selective Ionophore-Based Optical Sensors for Ammonia Measurments in Air. Anal. Chem. 64: 533–540.

    Article  CAS  Google Scholar 

  • Wild, R., Critterio, D., Spichiger, J. and Spichiger, U.E. (1996) Continuous monitoring of ethanol for bioprocess control by a chemical sensor. J. Biotech. 50: 37–46.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Birkhäuser Verlag

About this chapter

Cite this chapter

Spichiger, U.E. (1997). Biomimetic recognition elements for sensor applications. In: Scheller, F.W., Schubert, F., Fedrowitz, J. (eds) Frontiers in Biosensorics I. Experientia Supplementum, vol 80. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-9043-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9043-4_3

  • Published:

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9883-6

  • Online ISBN: 978-3-0348-9043-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics