Skip to main content

Operator Pencils Arising in Elasticity and Hydrodynamics: The Instability Index Formula

  • Conference paper
Book cover Recent Developments in Operator Theory and Its Applications

Part of the book series: Operator Theory Advances and Applications ((OT,volume 87))

Abstract

The main object of the paper is a quadratic operator pencil of the form

$$ A(\!\lambda\!)=F\lambda^2 + (\!D +iG\!)\lambda + T, $$

with unbounded operator coefficients acting in Hilbert space. It is assumed that F,T are selfadjoint and boundedly invertible and D ≥ 0,G are symmetric and T-bounded. Pencils of this form arise as abstract models for concrete problems in elastisity and hydrodynamics. We investigate the relations between the classical and generalized spectra and under additional hypotheses prove the formula for the number of eigenvalues of A(λ) in the right-half plane. The proof of this formula is based on the preliminary investigation of maximal semidefinite invariant subspaces in the root subspaces corresponding to the pure imaginary eigenvalues of a dissipative operator in Krein or Pontrjagin spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.Ja. Azizov, Dissipative operators in Hilbert space with indefinite metric, Izv. Acad. Nauk SSSR Ser. Mat. 37 (1973), no. 3 (Russian); English trans, in Math USSR Izv. 7 (1973).

    Google Scholar 

  2. T. Ja. Azizov and I.S. Iohvidov, Linear operators in spaces with indefinite metric, John Wiley, Chichester, 1989.

    Google Scholar 

  3. L.Barkwell, P.Lancaster, and A.S.Markus, Gyroscopically stabilized systems: a class of quadratic eigenvalue problems with real spectrum, Canadian J.Math. 44 (1992), 42–53.

    Article  MathSciNet  MATH  Google Scholar 

  4. N.G. Chetaev, The stability of motion, Pergamon Press, 1961.

    Google Scholar 

  5. A.M. Gomilko, Invariant subspaces of J-dissipative operators, J. Funct. Anal, and Appl. 19 (1985), no. 3, 213–214.

    Article  MathSciNet  MATH  Google Scholar 

  6. I. Gohberg, P. Lancaster and L. Rodman, Matrices and indefinite scalar product, Operator theory: Advances and Applications, Vol. 8, Birkhäuser Verlag, Basel-Boston-Stuttgart, 1983.

    Google Scholar 

  7. I. Gohberg and E.Sigal, An Operator Generalization of the Logarithmic Residue Theorem and the Theorem of Rouché, Mat. Sbornik 84 (1971); English transl. in Math. USSR Sbornik 13 (1971), 603–625.

    Article  MATH  Google Scholar 

  8. R.O.Griniv, On operator pencils arising in the problem of semiinfinite beam oscillations with internal damping, Moscow Univ. Math. Bulletin (to appear).

    Google Scholar 

  9. T. Kato, Perturbation theory for linear operators (2-nd edition), Springer-Verlag, New York, 1976.

    MATH  Google Scholar 

  10. M.V. Keldysh, On the completeness of eigenfunctions of certain classes of nonselfadjoint linear operators., Russian Math. Surveys 26 (1971), no. 4, 295–305.

    Article  Google Scholar 

  11. A.G. Kostyuchenko amd M.B. Orazov, On certain properties of the roots of a selfadjoint quadratic pensil, J. Funct. Anal Appl. 9 (1975), 28–40.

    Google Scholar 

  12. A.G. Kostyuchenko and A.A. Shkalikov, Selfadjoint quadratic operator pencils and elliptic problems, J. Funct. Anal, and Appl. 17 (1983), 109–128.

    Article  MathSciNet  MATH  Google Scholar 

  13. M.G.Krein and H.Langer, On Definite Subspaces and Generalized Resolvents of Hermitian Operators in Spaces Π k , Funkz. Anal, i Prilozh. vol 5 (1971), no. 2, 59–71; vol 5 (1971), no. 3, 54–69 (Russian); English transl in Funct. Anal, and Appl. 5 (1971).

    MathSciNet  Google Scholar 

  14. W. Tompson (Lord Kelvin) and P. Tait, Treatise on Natural Philosophy, Part 1, Cambrige Univ. Press, 1869.

    Google Scholar 

  15. J.L. Lions and E.Magenes, Problems aux Limites Nonhomogenes et Applications. Vol. 1, Dunod, Paris, 1968; English transl. in Springer Verlag, 1972.

    Google Scholar 

  16. P. Lancaster and A.A. Shkalikov, Damped vibrations of beams and related spectral problems, Can. Appl. Math. Quart. 2 (1994), no. 1, 45–90.

    MathSciNet  MATH  Google Scholar 

  17. P. Lancaster and M. Tismenetsky, Inertia characteristics of selfadjoint matrix polynomials, Lin. Algebra and Appl. 52/53 (1983), 479–496.

    MathSciNet  Google Scholar 

  18. A.S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, Amer. Math. Soc., Providence, 1988.

    MATH  Google Scholar 

  19. A.I. Miloslavskii, Foundation of the spectral approach in nonconservative problems of the theory of elastic stability, J. Funct. Anal. Appl. 17 (1983), no. 3, 233–235.

    Article  MathSciNet  Google Scholar 

  20. —, On stability of some classes of evolutionary equations, Siberian Math. J. 26 (1985), no. 5, 723–735.

    Article  MathSciNet  Google Scholar 

  21. L.S. Pontrjagin, Hermitian operators in spaces with indefinite metric, Izv. Acad. Nauk SSSR Ser. Mat. 8 (1944), 243–280. (Russian)

    MathSciNet  Google Scholar 

  22. M.P. Paidoussis and N.T. Issid, Dynamic stability of pipes conveying fluid, J. Sound Vibration 33 (1974), 267–294.

    Article  Google Scholar 

  23. V.N. Pivovarchik, A boundary value problem connected with the oscillation of elastic beams with internal and viscous damping, Moscow Univ. Math. Bulletin 42 (1987), 68–71.

    MathSciNet  Google Scholar 

  24. —, On oscillations of a semiinfinite beam with internal and external damping, Prikladnaya Mathem. and Mech. 52 (1988), no. 5, 829–836 (Russian); English transl. in J. Appl. Math. and Mech. (1989).

    MathSciNet  Google Scholar 

  25. —, On the spectrum of quadratic operator pencils in the right half plane, Matem. Zametki 45 (1989), no. 6, 101–103 (Russian); English transl. in Math. Notes 45 (1989).

    MathSciNet  MATH  Google Scholar 

  26. —, On the total algebraic multiplicity of spectrum in the right half plane for one class of quadratic operator pencils, Algebra and Analysis 3 (1991), no. 2, 223–230.

    MathSciNet  MATH  Google Scholar 

  27. A.C.M. Ran and D. Temme, Dissipative matrices and invariant maximal semidefinite subspaces, Linear Algebra Appl. (to appear).

    Google Scholar 

  28. A. A. Shkalikov, Selection principles and properties of some parts of eigen and associated elements of operator pencils, Moscow Univ. Math. Bulletin 43 (1988), no. 4, 16–25.

    MathSciNet  MATH  Google Scholar 

  29. —, Operator pencils and operator equations in Hilbert space, (Unpublished manuscript, University of Calgary), 1992.

    Google Scholar 

  30. —, Elliptic equations in Hilbert space and associated spectral problems, J. Soviet Math. 51 (1990), no. 4, 2399–2467.

    Article  MathSciNet  MATH  Google Scholar 

  31. A.A. Shkalikov and R.O. Griniv, On operator pencils arising in the problem of beam oscillation with internal damping, Matem. Zametkii 56 (1994), no. 2, 114–131 (Russian); English transl. in Math. Notes 56 (1994).

    MathSciNet  Google Scholar 

  32. H.K. Wimmer, Inertia theorems for matricies, controllability and linear vibrations, Linear Algebra Appl. (1974), no. 8, 337–343.

    Google Scholar 

  33. E.E. Zajac, The Kelvin-Tait-Chetaev theorem and extentions, J. Aeronaut. Sci. vol 11 (1964), no. 2, 46–49.

    Google Scholar 

  34. V.N. Zefirov, V.V. Kolesov and A.I. Miloslavskii, On eigenfrequences of a strightline pipe, Izv. Acad. Nauk SSSR, Ser. Mech. Tverdogo Tela (1985), no. 1, 179–188 (Russian); English transl. in Math. USSR Izv. Ser. Mech (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor Peter Lancaster on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Shkaliko, A.A. (1996). Operator Pencils Arising in Elasticity and Hydrodynamics: The Instability Index Formula. In: Gohberg, I., Lancaster, P., Shivakumar, P.N. (eds) Recent Developments in Operator Theory and Its Applications. Operator Theory Advances and Applications, vol 87. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9035-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9035-9_17

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9878-2

  • Online ISBN: 978-3-0348-9035-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics