Skip to main content

Geometry of Plane Curves via Toroidal Resolution

  • Conference paper
Algebraic Geometry and Singularities

Part of the book series: Progress in Mathematics ((PM,volume 134))

Abstract

Let C = f(x,y) = 0 be a germ of a reduced plane curve. As examples of the basic invariants of a plane curve, we have the Milnor number, the number of irreducible components, the resolution complexity, the Puiseux pairs of the irreducible components and their intersection multiplicities. In fact, the Puiseux pairs of the irreducible components and their intersection multiplicities are enough to describe the embedding topological type of C (see [17], [9]).

This work is done when the author is visiting at Mathematisches Institut, University of Basel in 1991. He thanks to the Institut for their support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Brauner Klassifikation der Singularitäten algebroider Kurven. Abh. Math. Semin. Hamburg Univ. vol 6. 1928.

    Google Scholar 

  2. V.I. Danilov The geometry of toric varieties Russian Math. Surveys. Pages 97–154 vol 33:2, 1978.

    Google Scholar 

  3. P. Griffiths and J. Harris Principles of Algebraic Geometry. A Wiley-Interscience Publication. New York-Chichester-Brisbane-Toronto. 1978.

    MATH  Google Scholar 

  4. A.G. Khovanskii Newton polyhedra and toral varieties. Funkts. Anal. Prilozhen. vol 11, No. 4, pages 56–67 1977.

    Google Scholar 

  5. A.G. Khovanskii Newton polyhedra and the genus of complete intersections Funkts. Anal. Prilozhen. vol 12, No. 1. pages 51–61, 1977.

    MathSciNet  Google Scholar 

  6. A.G. Kouchnirenko Polyèdres de Newton et Nombres de Milrior Inventiones Math, vol 32, pages 1–32, 1976.

    Google Scholar 

  7. G. Kempf, F. Knudsen, D. Mumford and B. Saint-Donat Toroidal Embeddings, Lecture Notes in Math. 339. Springer-Verlag. Berlin-Heidelberg-New York 1973.

    Google Scholar 

  8. H.B. Laufer Normal Two-Dimensional Singularities. Annals of Math. Studies. 71. Princeton Univ. Press. Princeton 1971.

    Google Scholar 

  9. D.T. Lê Sur un critére d’equismgularité. C.R.Acad.Sci.Paris, Ser. A–B. vol 272. pages 138–140 1971

    MathSciNet  MATH  Google Scholar 

  10. D.T. Lê and M. Oka On the Resolution Complexity of Plane Curves Titech-Mathfg preprints series 10–93. 1993.

    Google Scholar 

  11. J. Milnor Singular Points of Complex Hypersurface. Annals Math. Studies vol 61 Princeton Univ. Press. Princeton 1968.

    Google Scholar 

  12. T. Oda Convex Bodies and Algebraic Geometry. Springer-Verlag. Berlin-Heidelberg-New York. 1987.

    Google Scholar 

  13. M. Oka On the Resolution of Hypersurface Singularities. Advanced Study in Pure Mathematics, vol 8, pages 405–436, 1986

    MathSciNet  Google Scholar 

  14. M. Oka Principal zeta-function of non-degenerate complete intersection singularity J. Fac. Sci., Univ. of Tokyo vol 37, No. 1. pages 11–32. 1990.

    MathSciNet  MATH  Google Scholar 

  15. M. Oka On the topology of full non-degenerate complete intersection variety Nagoya Math. J. vol 121. pages 137–148, 1991.

    MathSciNet  MATH  Google Scholar 

  16. M. Oka Note on the resolution complexity of plane curve. Proceeding of the Workshop on Resolution of Singularities vol 1.82 (742) pages 125–148. 1993

    Google Scholar 

  17. O. Zariski Algebraic surfaces. Springer-Verlag. Berlin Heidelberg New York. 1934

    Google Scholar 

  18. O. Zariski Studies in equisingularity, I. Amer. J. Math, vol 31 pages 507–537. 1965.

    Article  MathSciNet  Google Scholar 

  19. O. Zariski Le Probleme des modules pour les branches planes. Cours donné au Centre de Mathematiqués de l’Ecole Polytechnique. 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Oka, M. (1996). Geometry of Plane Curves via Toroidal Resolution. In: López, A.C., Macarro, L.N. (eds) Algebraic Geometry and Singularities. Progress in Mathematics, vol 134. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9020-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9020-5_5

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9870-6

  • Online ISBN: 978-3-0348-9020-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics