Advertisement

Geometry of Plane Curves via Toroidal Resolution

Conference paper
Part of the Progress in Mathematics book series (PM, volume 134)

Abstract

Let C = f(x,y) = 0 be a germ of a reduced plane curve. As examples of the basic invariants of a plane curve, we have the Milnor number, the number of irreducible components, the resolution complexity, the Puiseux pairs of the irreducible components and their intersection multiplicities. In fact, the Puiseux pairs of the irreducible components and their intersection multiplicities are enough to describe the embedding topological type of C (see [17], [9]).

Keywords

Irreducible Component Plane Curve Exceptional Divisor Plane Curf Characteristic Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. Brauner Klassifikation der Singularitäten algebroider Kurven. Abh. Math. Semin. Hamburg Univ. vol 6. 1928.Google Scholar
  2. [2]
    V.I. Danilov The geometry of toric varieties Russian Math. Surveys. Pages 97–154 vol 33:2, 1978.Google Scholar
  3. [3]
    P. Griffiths and J. Harris Principles of Algebraic Geometry. A Wiley-Interscience Publication. New York-Chichester-Brisbane-Toronto. 1978.zbMATHGoogle Scholar
  4. [4]
    A.G. Khovanskii Newton polyhedra and toral varieties. Funkts. Anal. Prilozhen. vol 11, No. 4, pages 56–67 1977.Google Scholar
  5. [5]
    A.G. Khovanskii Newton polyhedra and the genus of complete intersections Funkts. Anal. Prilozhen. vol 12, No. 1. pages 51–61, 1977.MathSciNetGoogle Scholar
  6. [6]
    A.G. Kouchnirenko Polyèdres de Newton et Nombres de Milrior Inventiones Math, vol 32, pages 1–32, 1976.Google Scholar
  7. [7]
    G. Kempf, F. Knudsen, D. Mumford and B. Saint-Donat Toroidal Embeddings, Lecture Notes in Math. 339. Springer-Verlag. Berlin-Heidelberg-New York 1973.Google Scholar
  8. [8]
    H.B. Laufer Normal Two-Dimensional Singularities. Annals of Math. Studies. 71. Princeton Univ. Press. Princeton 1971.Google Scholar
  9. [9]
    D.T. Lê Sur un critére d’equismgularité. C.R.Acad.Sci.Paris, Ser. A–B. vol 272. pages 138–140 1971MathSciNetzbMATHGoogle Scholar
  10. [10]
    D.T. Lê and M. Oka On the Resolution Complexity of Plane Curves Titech-Mathfg preprints series 10–93. 1993.Google Scholar
  11. [11]
    J. Milnor Singular Points of Complex Hypersurface. Annals Math. Studies vol 61 Princeton Univ. Press. Princeton 1968.Google Scholar
  12. [12]
    T. Oda Convex Bodies and Algebraic Geometry. Springer-Verlag. Berlin-Heidelberg-New York. 1987.Google Scholar
  13. [13]
    M. Oka On the Resolution of Hypersurface Singularities. Advanced Study in Pure Mathematics, vol 8, pages 405–436, 1986MathSciNetGoogle Scholar
  14. [14]
    M. Oka Principal zeta-function of non-degenerate complete intersection singularity J. Fac. Sci., Univ. of Tokyo vol 37, No. 1. pages 11–32. 1990.MathSciNetzbMATHGoogle Scholar
  15. [15]
    M. Oka On the topology of full non-degenerate complete intersection variety Nagoya Math. J. vol 121. pages 137–148, 1991.MathSciNetzbMATHGoogle Scholar
  16. [16]
    M. Oka Note on the resolution complexity of plane curve. Proceeding of the Workshop on Resolution of Singularities vol 1.82 (742) pages 125–148. 1993Google Scholar
  17. [17]
    O. Zariski Algebraic surfaces. Springer-Verlag. Berlin Heidelberg New York. 1934Google Scholar
  18. [18]
    O. Zariski Studies in equisingularity, I. Amer. J. Math, vol 31 pages 507–537. 1965.MathSciNetCrossRefGoogle Scholar
  19. [19]
    O. Zariski Le Probleme des modules pour les branches planes. Cours donné au Centre de Mathematiqués de l’Ecole Polytechnique. 1973.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 1996

Authors and Affiliations

  1. 1.Department of MathematicsTokyo Institute of TechnologyMeguro-ku, TokyoJapan

Personalised recommendations