Skip to main content

Molecular mechanisms of neurotransmitter and neuropeptide release

  • Chapter
The Peptidergic Neuron

Part of the book series: Advances in Life Sciences ((ALS))

  • 67 Accesses

Summary

In synaptic transmission, calcium entry into the presynaptic nerve terminal causes docked synaptic vesicles to fuse with the plasma membrane and release their neurotransmitter contents across the synapse. A biochemical pathway for synaptic vesicle docking and fusion is currently being elucidated. The proteins implicated in this pathway are conserved between eukaryotes from yeast to mammals, and isoforms of these proteins mediate vesicle trafficking in a variety of constitutive and regulated transport steps. It is likely that the molecular mechanisms of synaptic vesicle exocytosis also apply to the release of neuropeptides from large dense-core vesicles. We have characterized n-sec1, a cytosolic protein of the nerve terminal that binds syntaxin. We have also identified three mammalian homologues of n-sec1 that may regulate vesicle trafficking between the Golgi apparatus and lysosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aalto, M.K., Ruohonen, L., Hosono, K. and Keränen, S. (1991) Cloning and sequencing of the yeast Saccharomyces cerevisiae SECI gene localized on chromosome IV. Yeast 7: 643–650.

    Article  PubMed  CAS  Google Scholar 

  • Aalto, M., Keränen, S. and Ronne, H. (1992) A family of proteins involved in intracellular transport. Cell 68: 181–182.

    Article  PubMed  CAS  Google Scholar 

  • Aalto, M.K., Ronne, H. and Keränen, S. (1993) Yeast syntaxins Ssolp and Sso2p belong to a family of related membrane proteins that function in vesicular transport. EMBO J. 12: 4095–4104.

    PubMed  CAS  Google Scholar 

  • Banta, L.M., Vida, T.A., Herman, P.K. and Emr, S.D. (1990) Characterization of yeast vps33p, a protein required for vacuolar protein sorting and vacuole biogenesis. Mol. Cell. Biol. 10: 4638–4649.

    PubMed  CAS  Google Scholar 

  • Bark, I.C. and Wilson, M.C. (1994) Regulated vesicular fusion in neurons: snapping together the details. Proc. Natl. Acad. Sci. USA 91: 4621–4624.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, M.K., Garcia-Arrarâs, J.E., Elferink, L.A., Peterson, K., Fleming, A.M., Hazuka, C.D. and Scheller, R.H. (1993) The syntaxin family of vesicular transport receptors. Cell 74: 1–20.

    Article  Google Scholar 

  • Bennett, M.K. and Scheller, R.H. (1994) A molecular description of synaptic vesicle membrane trafficking. Annu. Rev. Biochem. 63: 63–100.

    Article  PubMed  CAS  Google Scholar 

  • Cameron, P., Mundigl, O. and De Camilli, P. (1993) Traffic of synaptic vesicle proteins in polarized and nonpolarized cells. J. Cell Sci. Supplement 17: 93–100

    CAS  Google Scholar 

  • Chow, R.H., Klingauf, J. and Neher, E. (1994) Time course of Ca2+ concentration triggering exocytosis in neuroendocrine cells. Proc. Natl. Acad. Sci. USA 91: 12765–12769.

    Article  PubMed  CAS  Google Scholar 

  • Cowles, C.R., Emr, S.D. and Horazdovsky, B.F. (1994) Mutations in the VPS45 gene, a SEC1 homologue, result in vacuolar protein sorting defects and accumulation of membrane vesicles. J. Cell Sci. 107: 3449–3459.

    PubMed  CAS  Google Scholar 

  • Dascher, C., Ossig, R., Gallwitz, D. and Schmitt, H.D. (1991) Identification and structure of four yeast genes (SLY) that are able to suppress the functional loss of YPT1, a member of the RAS superfamily. Mol. Cell. Biol. 11: 872–885.

    PubMed  CAS  Google Scholar 

  • DeBello, W.M., Betz, H. and Augustine, G.J. (1993) Synaptotagmin and neurotransmitter release. Cell 74: 947–950.

    Article  PubMed  CAS  Google Scholar 

  • Garcia, E.P., Gatti, E., Butler, M., Burton, J. and de Camilli, P. (1994) A rat brain Secl homologue related to Rop and 1.JNC18 interacts with syntaxin. Proc. Natl. Acad. Sci. USA 91: 2003–2007.

    Article  PubMed  CAS  Google Scholar 

  • Garcia, E.P., McPherson, P.S., Chilcote, T.J., Takei, K. and De Camilli, P. (1995) rbSeçlA and B colocalize with syntaxin 1 and SNAP-25 throughout the axon, but are not in a stable complex with syntaxin. J Cell Biol. 129: 105–120.

    Article  PubMed  CAS  Google Scholar 

  • Geppert, M.., Goda, Y., Hammer, R.E., Li, C., Rosahl, T.W., Stevens, C.F. and SĂĽdhof, T.C. (1994) Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79: 717–727.

    Article  PubMed  CAS  Google Scholar 

  • Golding, D.W. (1994) A pattern confirmed and refined — synaptic, nonsynaptic and parasynaptic exocytosis. Bioessays 16: 503–508.

    Article  PubMed  CAS  Google Scholar 

  • Guttierrez, L.M., Quintanar, J.L., Viniegra, S., Salinas, E., Moya, F. and Reig, J.A. (1995) Anti-syntaxin antibodies inhibit calcium-dependent catecholamine secretion from permeabilized chromaffin cells. Biochem. Biophys. Res. Commun. 206: 1–7.

    Article  Google Scholar 

  • Hardwick, K.G. and Pelham, H.R.B. (1992) SED5 encodes a 39-kD integral membrane protein required for vesicular transport between the ER and the Golgi complex. J Cell Biol. 119: 513–521.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, S.D., Broadie, K., van de Goor, J. and Rubin, G.M. (1994) Mutations in the Drosophila Rop gene suggest a function in general secretion and synaptic transmission. Neuron 13: 555–566.

    CAS  Google Scholar 

  • Hata, Y., Slaughter, C.A. and SĂĽdhof, T.C. (1993) Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature 366: 347–351.

    Article  PubMed  CAS  Google Scholar 

  • Hata, Y. and SĂĽdhof, T.C. (1995) A novel ubiquitous form of Munc-l8 interacts with multiple syntaxins. J.Biol. Chem. 270: 13022–13028.

    Article  PubMed  CAS  Google Scholar 

  • Hodel, A., Schäfer, T., Gerosa, D. and Burger, M.M. (1994) In chromaffin cells, the mammalian Sec 1p homologue is a syntaxin IA-binding protein associated with chromaffin granules. J Biol. Chem. 269: 8623–8626.

    PubMed  CAS  Google Scholar 

  • Hosono, R., Hekimi, S., Kamiya, Y., Sassa, T., Murakami, S., Nishiwaki, K., Miwa, J., Taketo, A. and Koaira, K.-I. (1992) The unc-18 gene encodes a novel protein affecting the kinetics of acetylcholine metabolism in the nematode Caenorhabditis elegans. J Neurochem. 58: 1517–1525.

    Article  CAS  Google Scholar 

  • Ibaraki, K., Horikawa, H.P., Morita, T., Mori, H., Sakimura, K., Mishina, M., Saisu, H. and Abe, T. (1995) Identification of four different forms of syntaxin 3. Biochem. Biophys. Res. Commun. 211: 997–1005.

    Article  PubMed  CAS  Google Scholar 

  • Katagiri, H., Terasaki, J., Murata, T., Ishihara, H., Ogihara, T., Inukai, K., Fukushima, Y., Anai, M., Kikuchi, M., Miyazaki, J.-i., Yazaki, Y. and Oka, Y. (1995) A novel isoform of syntaxin-binding protein homologous to yeast Sec I expressed ubiquitously in mammalian cells. J Biol. Chem. 270: 4963–4966.

    Article  PubMed  CAS  Google Scholar 

  • Martin, T.F.J. (1994) The molecular machinery for fast and slow neurosecretion. Curr. Op. Neurobiol. 4: 626–632.

    Article  PubMed  CAS  Google Scholar 

  • O’Connor, D.T., Wu, H., Gill, B.M., Rozansky, D.J., Tang, K., Mahata, S.K., Mahata, M.M., Eskeland, N.L., Videen, J.S., Zhang, X., Takiyyudin and Palmer, R.J. (1994) Hormone storage vesicle proteins: Transcriptional basis of the widespread neuroendocrine expression of chromogranin A, and evidence of its diverse biological actions, intracellular and extracellular. Ann. N. Y. Acad. Sci. 733: 36–45.

    Google Scholar 

  • Ossig, R., Dascher, C., Trepte, H.-H., Schmitt, H.D. and Gallwitz, D. (1991) The yeast SLY gene products, suppressors of defects in the essential GTP-binding Yptl protein, may act in endoplasmic reticulum-toGolgi transport. Mol. Cell. Biol. 11: 2980–2993.

    PubMed  CAS  Google Scholar 

  • Pevsner, J. and Scheller, R.H. (1994) Mechanisms of vesicle docking and fusion: insights from the nervous system. Curr. Op. Cell Biol. 6: 555–560.

    Article  PubMed  CAS  Google Scholar 

  • Pevsner, J. Hsu, S.-C., and Scheller, R. ri. (1994a) n-Sect: a neural-specific syntaxin-binding protein. Proc. Natl. Acad Sci. USA 91: 1445–1449.

    Article  CAS  Google Scholar 

  • Pevsner, J., Hsu, S.-C., Braun, J.E.A., Calakos, N., Ting, A.E., Bennett, M.K. and Scheller, R.H. (1994b) Specificity and regulation of a synaptic vesicle docking complex. Neuron 13: 353–361.

    Article  PubMed  CAS  Google Scholar 

  • Pevsner, J., Hsu, S.-C., Hyde, P.S. and Scheuer, R.H. (submitted) Mammalian homologues of yeast vacuolar protein sorting (vps) genes implicated in Golgi-to-lysosome trafficking.

    Google Scholar 

  • Pfeffer, S.R. (1994) Clues to brain function from baker’s yeast. Proc. Natl. Acad. Sci. USA 91: 1987–1988.

    Article  PubMed  CAS  Google Scholar 

  • Piper, R.C., Whitters, E.A. and Stevens, T.H. (1994) Yeast Vps45p is a Sec 1p-like protein required for the consumption of vacuole-targeted, post-Golgi transport vesicles. Eur. J Cell Biol. 65: 305–318.

    PubMed  CAS  Google Scholar 

  • Popov, S.V. and Poo, M.-M. (1993) Synaptotagmin: a calcium-sensitive inhibitor of exocytosis? Cell 73: 1247–1249.

    Article  PubMed  CAS  Google Scholar 

  • Pryer, N.K., Wuestehube, L.J. and Schekman, R. (1992) Vesicle-mediated sorting. Annu. Rev. Biochem. 61: 471–516.

    Article  PubMed  CAS  Google Scholar 

  • Raymond, C.K., Howald-Stevenson, I., Vater, C.A. and Stevens, T.H. (1992) Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol. Biol. Cell 3: 1389–1402.

    PubMed  CAS  Google Scholar 

  • Rothman, J.E. and Warren, G. (1994) Implications of the SNARE hypothesis for intracellular membrane topolology and dynamics. Curr. Biol. 4: 220–233.

    Article  PubMed  CAS  Google Scholar 

  • Scheller, R. (1995) Membrane trafficking in the presynaptic nerve terminal. Neuron 14: 1–20.

    Article  Google Scholar 

  • Schulze, K.L., Littleton, J.T., Salzberg, A., Halachmi, N., Stern, M., Lev, Z. and Bellen, H.J. (1994) rop, a Drosophila homolog of yeast secl and vertebrate n-secl/munc-18 proteins, is a negative regulator of neurotransmitter release in vivo. Neuron 13: 1099–1108.

    Article  PubMed  CAS  Google Scholar 

  • Seward, E.P., Chernevskaya, N.I. and Nowycky, M.C. (1995) Exocytosis in peptidergic nerve terminals exhibits two calcium-sensitive phases during pulsatile calcium entry. J. Neurosci. 15: 3390–3399.

    PubMed  CAS  Google Scholar 

  • Söllner, T. and Rothman, J.E. (1994) Neurotransmissioning fusion machinery at the synapse. Trends Neurosci. 17: 344–353.

    Article  PubMed  Google Scholar 

  • SĂĽdhof, T.C. (1995) The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375: 645–653.

    Article  PubMed  Google Scholar 

  • Tellam, J.T., McIntosh, S. and James, D.E. (1995) Molecular identification of two novel Munc-18 isoforms expressed in non-neuronal tissues. J. Biol. Chem. 270: 5857–5863.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, P., Wong, J.G., Lee, A.K. and Almers, W. (1993) A low affinity Ca2+ receptor controls the final steps in peptide secretion from pituitary melanotrophs. Neuron 11: 93–104.

    Article  PubMed  CAS  Google Scholar 

  • Thomas-Reetz, A.C. and De Camilli, P. (1994) A role for synaptic vesicles in non-neuronal cells: clues from pancreatic 13 cells and from chromaffm cells. FASEB J. 8: 209–216.

    PubMed  CAS  Google Scholar 

  • Volknandt, W. (1995) The synaptic vesicle and its targets. Neuroscience 64: 277–300.

    Article  PubMed  CAS  Google Scholar 

  • Wada, Y., Kitamoto, K., Kanbe, T., Tanaka, K. and Anraku, Y. (1990) The SLPI gene of Saccharomyces cerevisiae is essential for vacuolar morphogenesis and function. Mol. Cell. Biol. 10: 2214–2223.

    PubMed  CAS  Google Scholar 

  • Whim, M.D., Church, P.J. and Lloyd, P.E. (1994) Functional roles of peptide cotransmitters at neuromuscular synapses in Aplysia. Mol. Neurobiol. 7: 335–347.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Pevsner, J. (1996). Molecular mechanisms of neurotransmitter and neuropeptide release. In: Krisch, B., Mentlein, R. (eds) The Peptidergic Neuron. Advances in Life Sciences. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9010-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9010-6_7

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9866-9

  • Online ISBN: 978-3-0348-9010-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics