Skip to main content

Role of the macrophage in angiogenesis-dependent diseases

  • Chapter
Regulation of Angiogenesis

Part of the book series: Experientia Supplementum ((EXS,volume 79))

Abstract

It is now well established that the functional domain of the macrophage Mφ extends far beyond its originally recognized role as a scavenger cell. The rich array of secretory products, now numbering in excess of 100 well characterized molecules, and their widespread anatomic distribution and functional heterogeneity, are unmatched by any other cell type (Nathan, 1987). This remarkable diversity enables the Mφ to influence virtually every facet of the immune response and inflammation as well as contribute to the etiology and/or pathogenesis of a number of diseases. Angiogenesis, the process which results in the formation of new capillary blood vessels, is an essential component of a number of important physiological processes (Folkman and Cotran, 1976; Auerbach, 1981; Folkman and Klagsbrun, 1987; Klagsbrun and D’Amore, 1991). Furthermore, when angiogenesis occurs in excess or inappropriately, it can contribute to the etiology and/or pathogenesis of several inflammatory, degenerative and developmental diseases. Mφ are key angiogenesis effector cells that produce a number of growth stimulators and inhibitors, proteolytic enzymes, and cytokines that can influence one or more steps in the angiogenesis cascade. In this review I will summarise the evidence implicating Mφ as important accessory cells in physiological angiogenic responses, and describe how disruption of the coordinate production of Mφ-derived stimulators and inhibitors of angiogenesis contributes to tumor progression and the pathogenesis of chronic inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, D.O. (1989) Molecular interactions in macrophage activation. Immunol. Today 10:33–35.

    Article  PubMed  CAS  Google Scholar 

  • Adams, D.O., Hamilton, T.A. (1984) The cell biology of the macrophage activation. Ann. Rev. Immun. 2:283–310.

    Article  CAS  Google Scholar 

  • Anderson, N.D., Anderson, A.O., Wyllie, R.G. (1975) Microvascular changes in lymph nodes draining skin allographs. Am. J. Pathol. 81:131–153.

    PubMed  CAS  Google Scholar 

  • Auerbach, R. (1981) Angiogenesis-inducing factors: a review. Lymphokines 4:69–88.

    CAS  Google Scholar 

  • Besner, G.E., Klagsbrun, M. (1991) Mφ secrete a heparin-binding inhibitor of endothelial cell growth. Microvasc. Res. 42:187–197.

    Article  PubMed  CAS  Google Scholar 

  • Bornstein, P., Sage, H.E. (1994) Thrombospondins. Methods in Enzymology 245:62–85.

    Article  PubMed  CAS  Google Scholar 

  • Bornstein, P. (1995) Diversity of function is inherent in matrix proteins: An appraisal of thrombospondin 1. J. Cell Biol. 130:503–506.

    Article  PubMed  CAS  Google Scholar 

  • Bouck, N.P., Stoler, A., Polverini, P.J. (1986) Coordinate control of anchorage independence, actin cytoskeleton and angiogenesis by human chromosome 1 in hamster-human hybrids. Cancer Res. 46:5101–5105.

    PubMed  CAS  Google Scholar 

  • Bouck, N. (1990) Tumor angiogenesis: role of oncogenes and tumor suppressor genes. Cancer Cells 2:179–185.

    PubMed  CAS  Google Scholar 

  • Bouck, N. (1993) Angiogenesis: a mechanism by which oncogenes and tumor suppressor genes regulate tumorigenesis. In: Oncogenes and tumor suppressor genes in human malignancy (Benz, C.C., Liu, E.T. editors, Boston: Kluwer Academic, pp. 359–371.

    Chapter  Google Scholar 

  • Braverman, J.M., Yen, A. (1977) Ultrastructure of the capillary loops in the dermal papillae of psoriasis. J. Invest. Dermatol. 68:53–58.

    Article  PubMed  CAS  Google Scholar 

  • Browder, W., Williams, D., Lucore, P., Pretus, H., Jones, E., McNamee, R. (1988) Effect of enhanced macrophage function on early wound healing. Surgery 104:224–230.

    PubMed  CAS  Google Scholar 

  • Calderon, J., Kiely, J.-M., Lefko, J.L., Unanue, E.R. (1975) The modulation of lymphocyte functions by molecules secreted by Mφ. I. Description and partial biochemical analysis. J. Exp. Med. 142:151–164.

    CAS  Google Scholar 

  • Calderon, J., Unanue, E.R. (1975) Two biological activities regulating cell proliferation found in cultures of peritoneal exudate Mφ. Nature 253:359–361.

    Article  PubMed  CAS  Google Scholar 

  • Calderon, J., Williams, R.T., Unanue, E.R. (1974) An inhibitor of cell proliferation released from cultures of Mφ. Proc. Natl. Acad. Sci. USA 71:4273–4277.

    Article  PubMed  CAS  Google Scholar 

  • Calderon, J, Kiely, JM., Lefka, J., Ununue, E. (1976) The modulation of lymphocyte functions by molecules secreted by macrophages. II. conditions leading to increased secretion. J. Exp. Med. 144:155–160.

    Google Scholar 

  • Carrell, A. (1922) Growth promoting functions of leukocytes. J. Exp. Med. 36:385–391.

    Article  Google Scholar 

  • Carlos, T.M., Harlan, J.M. (1994) Leukocyte-endothelial adhesion molecules. Blood 84: 2068–2101.

    PubMed  CAS  Google Scholar 

  • Clark, R.A. Stone, R.D., Leung, D.Y.K., Silver, I., Hohn, D.D., Hunt, T.K. (1976) Role of Mφ in wound healing. Surg. Forum 27:16–18.

    PubMed  CAS  Google Scholar 

  • Dameron, K.M., Volpert, O.V, Tainsky, M.A., Bouck, N. (1994) Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265:1582–1584.

    Article  PubMed  CAS  Google Scholar 

  • Danon, D., Kowatch, M.A., Roth, G.S. (1989) Promotion of repair in old mice by local injection of Mφ. Proc. Natl. Acad. Sci. USA 86:2018–2020.

    Article  PubMed  CAS  Google Scholar 

  • DiPietro, L.A., Polverini, P.J. (1993) Role of the macrophage in the positive and negative regulation of wound neovascularization. Behring Inst. Mitt. 92:238–247.

    PubMed  CAS  Google Scholar 

  • DiPietro, L.A., Polverini, P.J. (1994) Angiogenic Mφ produce the angiogenesis inhibitor throm bospondin 1. Am. J. Pathol. 143:678–684.

    Google Scholar 

  • DiPietro, L.A., Nebgen, D.R., Polverini, P.J. (1994) Downregulation of endothelial cell throm-bospondin 1 enhances in vitro angiogenesis. J. Vas. Res. 31:178–185.

    Article  CAS  Google Scholar 

  • DiPietro, L.A., Nissen, N.N., Gamelli, R.L., Koch, A.E., Pyle, J.M., Polverini, D.T. (1996) Thrombospondin 1 synthesis and function in wound repair. Am. J. Pathol. 148:1851–1860.

    PubMed  CAS  Google Scholar 

  • Dvorak, A.M., Mim, M.C., Dvorak, H.F. (1976) Morphology of delayed-type hypersensitivity reactions in man. II. Ultrastructural alterations affecting the microvasculature and the tissue mast cell. Lab. Invest. 34:179–191.

    CAS  Google Scholar 

  • Evans, R. (1977a) Effect of x-irradiation on host cell infiltration and growth of murine fibrosarcoma. Br. J. Cancer 35:557–566.

    Article  PubMed  CAS  Google Scholar 

  • Evans, R. (1977b) The effect of azothioprine on host-cell infiltration and growth of a murine fibrosarcoma. Int. J. Cancer 20:120–128.

    Article  PubMed  CAS  Google Scholar 

  • Evans, R. (1978) Macrophage requirement for growth of murine fibrosarcoma. Br. J. Cancer 37:1086–1095.

    Article  PubMed  CAS  Google Scholar 

  • Fahey, T.J., Sherry, B., Tracey, K.J., van Deventer, S., Jones, WG., Minei, J.P., Morgello, S., Shires, G.T., Cerami, A. (1991) Cytokine production in a model of wound healing: the appearance of MIP-1, MIP-2, cachetin/TNF, and IL-1. Cytokine 2:2–19.

    Google Scholar 

  • Fajardo, L.F., Kwan, H.H., Kowalski, J., Prionas, S.D., Allison, A.C. (1992) Dual role of tumor necrosis factor a in angiogenesis. Am. J. Pathol. 140:539–544.

    PubMed  CAS  Google Scholar 

  • Farber, E.M., Nall, M.L., Watson, W (1974) Natural history of psoriasis in 61 twin pairs. Arch. Dermatol. 109:207–211.

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J. (19772a) Angiogenesis in psoriasis: Therapeutic implications. J. Invest. Dermatol. 59:40–48.

    Article  Google Scholar 

  • Folkman, J. (1972b) Anti-angiogenesis: a new concept for therapy of solid tumors. Ann. Surg. 175:409–416.

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J., Cotran, R.S. (1976) Relation of vascular proliferation to tumor growth. Int. Rev. Exp. Pathol. 16:207–248.

    PubMed  CAS  Google Scholar 

  • Folkman, J., Klagsbrun, M. (1987) Angiogenic factors. Science 235:442–447.

    Article  PubMed  CAS  Google Scholar 

  • Ford, H., Hoffman, R.A., Wing, E.J., Magee, M., McIntyre, L., Simmons, R.L. (1987) Characterization of wound cytokines in the sponge matrix model. Arch. Surg. 124:1422–1428.

    Google Scholar 

  • Frazier, W.A. (1987) Thrombospondin: a modular adhesive glycoprotein of platelets and nucleated cells. J. Cell Biol. 105:625–632.

    Article  PubMed  CAS  Google Scholar 

  • Frazier, W.A. (1991) Thrombospondin. Curr. Opinions in Cell Biol. 3:792–799.

    Article  CAS  Google Scholar 

  • Gell, P.G.H. (1959) Cytological events in hypersensitivity reactions. In: Cellular and Humoral Aspects of the Hypersensitivity States. Lawrence (Ed) New York: Harper and Row, p. 43.

    Google Scholar 

  • Gillespie, G.Y, Estes, J.E., Pledger, W.J. (1986) Macrophage derived growth factors for mesenchymal cells. Lymphokines 2:213–242.

    Google Scholar 

  • Good, D.J., Polverini, P.J. Rastinejad, F., Le Beau, M.M., Lemons, R.S., Frazier, W.A., Bouck, N.P. (1990) A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc. Natl. Acad. Sci. USA 87:6624–6628.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, S. (1986) The biology of the macrophage. J. Cell Sci. Suppl. 4:267–286.

    PubMed  CAS  Google Scholar 

  • Gordon, S., Unkeless, J.C., Cohn, Z.A. (1974) Induction of macrophage plasminogen activator by endotoxin stimulation and phagocytosis. J. Exp. Med. 140:995–1010.

    Article  PubMed  CAS  Google Scholar 

  • Graham, R.C., Shannon, S. (1972) Peroxidase arthritis. II. Lymphoid cell-endothelial interactions during developing immunologic inflammatory responses. Am. J. Pathol. 69:7–14.

    CAS  Google Scholar 

  • Grotendorst, G., Grotendorst, CA., Gilman, T. (1988) Production of growth factors (PDGF and TGF-ß) at the site of tissue repair. Prog. Clin. Biol. Res. 266:131–145.

    Google Scholar 

  • Harris, E.D. Jr. (1974) Recent insights into the pathogenesis of the proliferative lesions in rheumatoid arthritis. Arthritis Rheum. 19:48–72.

    Google Scholar 

  • Hunt, T.K., Knighton, D.R., Thakral, K.K., Goodson, W.H., Andrews, W.S. (1984) Studies on inflammation and wound healing: angiogenesis and collagen synthesis stimulated in vivo by resident and activated wound Mφ. Surgery 96:48–54.

    PubMed  CAS  Google Scholar 

  • Ingber, D.E., Folkman, J. (1989) Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro. Role of the extracellular matrix. J. Cell Biol. 109:317–330.

    CAS  Google Scholar 

  • Ingber, D.E. (1991) Extracellular matrix and cell shape: Potential control points for the inhibition of angiogenesis. J. Cell Biochem. 47:236–241.

    Article  PubMed  CAS  Google Scholar 

  • Iruela-Arispe, M., Bornstein, P., Sage, H. (1991) Thrombospondin exerts an antiangiogenic effect on cord formation by endothelial cells in vitro. Proc. Natl. Acad. Sci. USA 88:6026–5030.

    Article  Google Scholar 

  • Jaffe, E.A., Ruggiero, J.T., Falcone, D.J. (1985) Monocytes and Mφ synthesize and secrete thrombospondin. Blood 65:79–84.

    PubMed  CAS  Google Scholar 

  • Jensen, J.A., Hunt, T.K., Scheuenstuhl, H., Banda, M. J. (1986) Effect of lactate, pyruvate, and pH on secretion of angiogenesis and mitogenesis factors by macrophages. Lab. Invest. 54:574–578.

    PubMed  CAS  Google Scholar 

  • Johnston, R.B., Jr. (1988) Monocytes and Mφ. New Eng. J. Med. 318:747–752.

    Article  PubMed  Google Scholar 

  • Kahaleh, M.B., DeLustro, F., Bock, W., LeRoy, E.C. (1986) Human monocyte modulation of endothelial cell and fibroblast growth: Possible mechanisms for fibrosis. Clin. Immunol. Immunopathol. 39:242–255.

    Article  PubMed  CAS  Google Scholar 

  • Kaminski, M.J., Majewski, S., Jablonska, S., Pawinska, M. (1984) Lowered angiogenic capability of peripheral blood lymphocytes in progressive systemic sclerosis (scleroderma). J. Invest. Dermatol. 82:239–243.

    Article  PubMed  CAS  Google Scholar 

  • Klagsbrun, M., D’Amore, P.A. (1991) Regulators of angiogenesis. Ann. Rev. Physiol. 53: 217–239.

    Article  CAS  Google Scholar 

  • Knighton, D.R., Hunt, T.K., Scheuenstuhl, N., Halliday, B.T., Werb, Z., Bunda, M.J. (1983) Oxygen tension regulates the expression of angiogenesis factor by macrophages. Science 221:1283–1285.

    Article  PubMed  CAS  Google Scholar 

  • Koch, A.E., Polverini, P.J., Leibovich, S.J. (1986) Stimulation of neovascularization by human rheumatoid synovial tissue M φ. Arth. Rheum. 29: 471–479.

    Article  CAS  Google Scholar 

  • Koch, A.E., Litvak, M.A., Burrows, J.C., Polverini, P.J. (1992) Decreased monocyte-mediated angiogenesis in scleroderma. Clin. Immunol. Immunopath. 64:153–160.

    Article  CAS  Google Scholar 

  • Koch, A.E., Polverini, P.J. Kunkel, S.L., Harlow, L.A., DiPietro, L.A., Elner, V.M., Elner, S.G., Strieter, R.M. (1992b) Interleukin-8 (IL-8) is a potent macrophage-derived mediator of angiogenesis that is blocked by IL-8 antibody and antisense oligonucleotides. Science 258:179–1801.

    Article  Google Scholar 

  • Koch, A.E., Halloran, M.M., Haskell, C.J., Shah, M.R., Polverini, P.J. (1995) Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1. Nature 376:517–519.

    Article  PubMed  CAS  Google Scholar 

  • Lawler, J. (1986) The structural and functional properties of thrombospondin. Blood 67: 1191–1209.

    Google Scholar 

  • Leibovich, S.J., Ross, R. (1975) The role of the macrophage in wound repair: a study with hydrocortisone and antimacrophage serum. Am. J. Pathol. 78:71–91.

    PubMed  CAS  Google Scholar 

  • Leibovich, S.J., Ross, R. (1976) A macrophage-dependent factor that stimulates the proliferation of fibroblasts in vivo. Am. J. Pathol. 84:501–514.

    PubMed  CAS  Google Scholar 

  • Leibovich, S.J., Polverini, P.J., Shepard, H.M., Wiseman, D.M., Shirely, V, Nuseir, N. (1987) Macrophage-induced angiogenesis is mediated by tumor necrosis factor-α. Nature 329: 430–432.

    Article  Google Scholar 

  • Leibovich, S.J., Wiseman, D.M. (1988) Mφ, wound repair and angiogenesis. Proc. Clin. Biol. Res. 266:131–145.

    CAS  Google Scholar 

  • Malhotra, R., Stenn, K.S., Fernandez, L.A., Braverman, I.M. (1989) Angiogenic properties of normal and psoriatic skin associated with epidermis, not dermis. Lab. Invest. 61:162–165.

    PubMed  CAS  Google Scholar 

  • Mantovani, A. (1994) Biology of disease. Tumor-associated Mφ in neoplastic progression: A paradigm for the in vivo function of chemokines. Lab. Invest. 71:5–16.

    PubMed  CAS  Google Scholar 

  • Marczak, M., Majewski, S., Skopinska-Rozewska, E., Polakowski, I., Jablonska, S. (1986) Enhanced angiogenic capability of monocyte-enriched mononuclear cell suspensions from patients with systemic sclerosis. J. Invest. Dermatol. 86:355–358.

    Article  PubMed  CAS  Google Scholar 

  • Maricq, H.R., Spencer-Green, G., LeRoy, E.C. (1976) Skin capillary abnormalities as indicators of organ involvement in scleroderma (systemic sclerosis), Raynaud’s syndrome and der-matomyositis. Am. J. Med. 61: 862–870.

    Article  PubMed  CAS  Google Scholar 

  • Maricq, H.R. (1981) Widenfield capillary microscopy. Technique and rating scale for abnormalities seen in scleroderma and related disorders. Arthritis Rheum. 24:1159–1165.

    CAS  Google Scholar 

  • Moore, J.W, Sholley, M.M. (1985) Comparison of the neovascular effects of stimulated Mφ and neutrophils in autologous rabbit corneas. Am. J. Pathol. 120:87–98.

    PubMed  Google Scholar 

  • Mostafa, L.K., Jones, D.B., Wright, D.H. (1980a) Mechanism of induction of angiogenesis by human neoplastic lymphoid tissue: studies on the chorioallentoic membrane (CAM) of the chick embryo. J. Pathol. 132:197–205.

    Google Scholar 

  • Mostafa, L.K., Jones, D.B., Wright, D.H. (1980b) Mechanism of induction of angiogenesis by human neoplastic lymphoid tissue: studies employing bovine aortic endothelial cells in vitro. J. Pathol. 132:207–216.

    Article  PubMed  CAS  Google Scholar 

  • Nathan, C. (1987) Secretory products of Mφ. J Clin. Invest. 79:319–326.

    Article  PubMed  CAS  Google Scholar 

  • Nickoloff, B.J., Riser, B.L., Mitra, R.S., Dixit, VM, Varani, J. (1988) Inhibitory effect of gamma interferon on cultured keratinocytes thrombospondin production, distribution, and biological activity. J. Invest. Dermatol. 91:213–218.

    Article  PubMed  CAS  Google Scholar 

  • Nickoloff, B.J. (1991) The cytokine network in psoriasis. Arch. Dermatol. 127:871–884.

    Article  PubMed  CAS  Google Scholar 

  • Nickoloff, B.J., Mitra, R.S., Varani, J., Dixit, VM., Polverini, P.J. (1994) Aberrant production of interleukin-8 and thrombospondin-1 by psoriatic keratinocytes mediates angiogenesis. Am. J. Pathol. 144:820–828.

    PubMed  CAS  Google Scholar 

  • Orchard, P.J., Smith, CM., Woods, WG., Day, D.L., Dehner, L.P. (1989) Treatment of hemangioendotheliomas with α-interferon. The Lancet 2:565–567.

    Article  CAS  Google Scholar 

  • O’Shea, K.S., Dixit, VM. (1988) Unique distribution of the extracellular matrix component thrombospondin in the developing mouse embryo. J. Cell. Biol. 107:2737–2748.

    Article  PubMed  Google Scholar 

  • Polverini, P.J., Cotran, R.S., Sholley, M.M. (1977a) Endothelial proliferation in the delayed hypersensitivity reaction: An autoradiographic study. J. Immunol. 118:529–532.

    PubMed  CAS  Google Scholar 

  • Polverini, P.J., Cotran, R.S., Gimbron, M.A., Jr., Unanue, E.R. (1977b). Activated Mφ induce vascular proliferation. Nature 269:804–806.

    Article  PubMed  CAS  Google Scholar 

  • Polverini, P.J., Leibovich, S.J. (1984) Induction of neovascularization in vivo and endothelial cell proliferation in vitro by tumor-associated Mφ. Lab. Invest. 51:635–642.

    PubMed  CAS  Google Scholar 

  • Polverini, P. J., Leibovich, S.J. (1987) Effect of macrophage depletion on growth and neovascularization of hamster buccal pouch carcinomas. J. Oral Pathol. 16:436–441.

    Article  PubMed  CAS  Google Scholar 

  • Polverini, P.J. (1989) Macrophage-induced Angiogenesis: A Review. In: Macrophage-Derived Regulatory Factors, Sorg, C, (Ed.), Basel: S. Karger, pp. 54–73.

    Google Scholar 

  • Polverini, P.J. (1995) The pathophysiology of angiogenesis. Crit. Rev. Oral Biol. Med. 6:23–247.

    Article  Google Scholar 

  • Polverini, P.J., DiPietro, L.A., Dixit, VM., Hynes, R.O., Lawler, J. (1995) Thrombospondin 1 knockout mice show delayed organization and prolonged neovascularization of skin wounds. FASEB J. 9:272 a.

    Google Scholar 

  • Rappolee, D.A., Mark, D., Banda, M.J., Werb, Z. (1988) Wound Mφ express TGF-α and other growth factors in vivo: analysis by mRNA phenotyping. Science 241:708–712.

    Article  PubMed  CAS  Google Scholar 

  • Rastinejad, F., Polverini, P.J., Bouck, N.P. (1989) Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 56:345–355.

    Article  PubMed  CAS  Google Scholar 

  • Riches, D.W. (1988) The multiple roles of Mφ in wound healing. In: The Molecular and Cellular Biology of Wound Repair, Clark, R.A.F. and Henson, P.M. (eds.), New York: Plenum, pp. 4023–36.

    Google Scholar 

  • Ross, R., Odland, G.F. (1968) Human wound repair, II. Inflammatory cells, epithelial-mesenchymal interrelations and fibrogenesis. J. Cell Biol. 39:152–168.

    Article  CAS  Google Scholar 

  • Sage, H., Bornstein, P. (1982) Endothelial cells from umbilical vein and a hemangioendothelioma secrete basement membrane largely tot he exclusion of interstitial procollagens. Arteriosclerosis 2:27–36.

    Article  PubMed  CAS  Google Scholar 

  • Sage, H., Bornstein, P. (1991) Extracellular proteins that modulate cell-matrix interactions. J. Biol. Chem. 266:14831–14834.

    PubMed  CAS  Google Scholar 

  • Sager, R. (1989) Tumor suppressor genes: the puzzle and the promise. Science 246:1406–1410.

    Article  PubMed  CAS  Google Scholar 

  • Schrader, J.W. (1973) Mechanism of activation of the bone marrow-derived lymphocyte. III. A distinction between a macrophage-produced triggering signal and the amplifying effect on triggered B lymphocytes of all agenetic interactions. J. Exp. Med. 138:1466–1480.

    CAS  Google Scholar 

  • Schreiber, A.B., Winkler, M.E., Derynck, R. (1986) Transforming growth factor-α: a more potent angiogenic mediator than epidermal growth factor. Science 232:1250–1253.

    Article  PubMed  CAS  Google Scholar 

  • Sidkey, Y.A., Auerbach, R. (1975) Lymphocyte-induced angiogenesis (LIA): A quantitative and sensitive assay of the graft vs. host reaction. J. Exp. Med. 141:1084–1110.

    Article  Google Scholar 

  • Seibold, J.R., Scleroderma. In: Textbook of Rheumatology. Third ed. (Kelley, W.E., Harris, E.D., Ruddy, S., Sledge, C.B., eds.) Saunders, Philadelphia, PA 1985.

    Google Scholar 

  • Silverstein, R.L., Nachman, R.L. (1987) Thrombosponin binds to monocytes and Mφ and mediates platelet-monocyte adhesion. J. Clin. Invest. 79:867–874.

    Article  PubMed  CAS  Google Scholar 

  • Sorg, C, Lohmann-Matthes, M.L. (1989) Macrophages and accessory cells of the immune system. Immunol. Today 10:27–29.

    Google Scholar 

  • Stein, M., Keshav, S. (1992) The versitility of Mφ. Clin. Exp. Allergy 22:18–27.

    Article  Google Scholar 

  • Stenzinger, W., Bruggen, J., Macher, E., Sorg, C. (1983) Tumor angiogenic activity (TAA) production in vivo and growth in the nude mouse by human malignant melanoma. Eur. J. Cancer Clin. Oncol. 19:649–656.

    Article  PubMed  CAS  Google Scholar 

  • Strieter, R.M., Kunkel, S.L., Einer, VM., Martonyi, C.L., Koch, A.E., Polverini, P.J., Einer, S.G. (1992) Interleukin-8: a corneal factor that induces neovascularization. Am. J. Pathol. 141:1279–1284.

    PubMed  CAS  Google Scholar 

  • Sunderkotter, C, Goebeler, M., Schultze-Osthoff, K, Bhardwaj, R., Sorg, C. (1991) Macro-phage-derived angiogenesis factors. Pharmac. Ther. 51:195–216.

    Article  CAS  Google Scholar 

  • Sunderkotter, C, Steinbrink, K, Goebeler, M., Bhardwaj, R., Sorg, C. (1994) Macrophages and angiogenesis. J. Leu. Biol. 55:410–422.

    CAS  Google Scholar 

  • Skekanecz, Z., Haines, G.K., Lin, T.R., Harlow, L.A., Goerdt, S., Rayan, G., Koch, A.E. (1994) Differential distribution of intercellular adhesion molecules (ICAM-1, ICAM-2, and ICAM-3) and the MS-1 antigen in normal and diseased human synovia. Their possible pathogenetic and clinical significance in rheumatoid arthritis. Arthritis Rheum. 37:221–231.

    Google Scholar 

  • Thakral, K.K., Goodson, W., Hunt, T.K. (1979) Stimulation of wound blood vessel growth by wound Mφ. J. Surg. Res. 26:430–436.

    Article  PubMed  CAS  Google Scholar 

  • Unanue, E.R. (1976) Secretory function of mononuclear phagocytes. Am. J. Pathol. 83:396–417.

    PubMed  CAS  Google Scholar 

  • Unanue, E.R., Kiely, J.-M., Calderon, J. (1976) The modulation of lymphocyte functions of molecules secreted by Mφ. II. conditions leading to increased secretion. J. Exp. Med. 144:155–166.

    CAS  Google Scholar 

  • Van Furth, R. (1988) Phagocytic cells: development and distribution of mononuclear phagocytes in normal steady state and in inflammation. In: Inflammation: Basic Principles and Clinical Correlates. Gallin, J.I., Goldstein, I.M., Snyderman, R. (eds.) Raven Press, New York, pp. 281–295.

    Google Scholar 

  • Vilette, D., Setiadi, H., Wautier, M.-P, Caen, J, Wautier, J.-L. (1990) Identification of an endothelial cell growth inhibitory activity produced by human monocytes. Exp. Cell Res. 188:219–225.

    Article  PubMed  CAS  Google Scholar 

  • Weinberg, R. (1989) Oncogenes, antioncogenes, and the molecular basis of multistep carcinogenesis. Cancer Res. 49:3713–3721.

    PubMed  CAS  Google Scholar 

  • White, C.W, Wolf, S.J., Korones, D.N., Sondheimer, H.M., Tosi, M.F., Yu, A. (1991) Treatment of childhood angiomatous diseases with recombinant interferon-α. J. Pediatr. 118:59–66.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe, J.E., Jr., Hubler, W.R., Jr. (1976) Angiogenesis in psoriasis. In: Psoriasis: Proceedings of the Second International Symposium. Edited by Farber, E., Cox, A. New York: York Medical Books, pp. 40:375–377.

    Google Scholar 

  • Wolfe, J.E. (1989) Angiogenesis in normal and psoriatic skin. Lab. Invest. 61:139–142.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Birkhäuser Verlag Basel, Switzerland

About this chapter

Cite this chapter

Polverini, P.J. (1997). Role of the macrophage in angiogenesis-dependent diseases. In: Goldberg, I.D., Rosen, E.M. (eds) Regulation of Angiogenesis. Experientia Supplementum, vol 79. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9006-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9006-9_2

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9864-5

  • Online ISBN: 978-3-0348-9006-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics