Skip to main content

Part of the book series: Respiratory Pharmacology and Pharmacotherapy ((RPP))

Abstract

Exacerbations of asthma and chronic bronchitis are commonly due to viral infections of the airways [1–11]. The association of viral infection with asthma exacerbation is most striking in children, in whom at least 30–40% [12–14] and perhaps as many as 75% of exacerbations [15] of asthma are caused by viral infections. The study of the mechanisms of virus-induced asthma attacks has led to the development of animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Little JW, Hall WJ, Douglas RG, Mudholkar GS, Speers DM, Patel K. Airway hyperreactivity and peripheral airway dysfunction in influenza A infection. Am Rev Respir Dis 1978; 118: 295–303.

    PubMed  CAS  Google Scholar 

  2. Frick OL, German DF, Mills J. Development of allergy in children. I. Association with virus infections. J Allergy Clin Immunol 1979; 63: 228–241.

    PubMed  CAS  Google Scholar 

  3. Henderson FW, Clyde WA, Collier AM, Denny FW, Senior RJ, Sheaffer CI, et al. The etiologic and epidemiologic spectrum of bronchiolitis in pediatric practice. J Pediatr 1979; 95: 183–190.

    PubMed  CAS  Google Scholar 

  4. Welliver RC. Upper respiratory infections in asthma. J Allergy Clin Immunol 1983; 72: 341–346.

    PubMed  CAS  Google Scholar 

  5. Frick WE, Busse WW. Respiratory infections: Their role in airway responsivness and pathogenesis of asthma. Clin Chest Med 1988; 9: 539–549.

    PubMed  CAS  Google Scholar 

  6. Carilli AD, Gohd RS, Gordon W. A virological study of chronic bronchitis. N Engl J Med 1964; 270: 123–127.

    PubMed  CAS  Google Scholar 

  7. Eadie MB, Stott EJ, Grist NR. Virological studies in chronic bronchitis. Br Med J 1966; 2: 671–673.

    PubMed  CAS  Google Scholar 

  8. Stenhouse AC. Rhinovirus infection in acute exacerbations of chronic bronchitis. Br Med J 1967; 3: 461–463.

    PubMed  CAS  Google Scholar 

  9. Stenhouse AC. Viral antibody levels and clinical status in acute exacerbations of chronic bronchitis: a controlled prospective study. Br Med J 1968; 3: 287–290.

    PubMed  CAS  Google Scholar 

  10. Lamy ME, Pouthier-Simon F, Debaker-Williame E. Respiratory viral infections in hospital patients with chronic bronchitis. Chest 1973; 63: 336–341.

    PubMed  CAS  Google Scholar 

  11. Gump DW, Phillips CA, Forsyth BR, Mcintosh K, Lamborn KR, Stouch WH. Role of infection in chronic bronchitis. Am Rev Respir Dis 1976; 113: 465–474.

    PubMed  CAS  Google Scholar 

  12. McIntosh K, Ellis EF, Hoffman LS, Lybass TG, Eller JJ, Fulginiti VA. The association of viral and bacterial respiratory infections with exacerbations of wheezing in young asthmatic children. J Pediatr 1973; 82: 578–590.

    PubMed  CAS  Google Scholar 

  13. Minor TE, Dick EC, DeMeo AN, Ouellette JJ, Cohen M, Reed CE. Viruses as précipitants of asthmatic attacks in children. J Amer Med Assoc 1974; 227: 292–298.

    CAS  Google Scholar 

  14. Minor TE, Dick EC, Baker JW, Ouellette JJ, Cohen M, Reed CE. Rhinovirus and influenza type A infections as precipitants of asthma. Am Rev Respir Dis 1976; 113: 149–153.

    PubMed  CAS  Google Scholar 

  15. Johnston S, Pattemore P, Smith S, Sanderson G, Josephs L, Bardin P, et al. The association of viral infections with longitudinal changes in respiratory symptoms and/or peak flow recordings in school children. Eur Respir J 1992; 5: 109s.

    Google Scholar 

  16. Empey DW, Laitinen LA, Jacobs L, Gold WM, Nadel JA. Mechanisms of bronchial hyperreactivity in normal subjects following upper respiratory tract infection. Am Rev Respir Dis 1976; 113: 523–527.

    Google Scholar 

  17. Lemanske RF, Dick EC, Swensen CA, Vrtis RF, Busse WW. Rhinovirus upper respiratory infection increases airway hyperreactivity and late asthmatic reactions. J Clin Invest 1989; 83: 1–10.

    PubMed  Google Scholar 

  18. Aquilina AT, Hall WJ, Douglas RG, Utell M J. Airway reactivity in subjects with viral upper respiratory tract infections: the effects of exercise and cold air. Am Rev Respir Dis 1980; 122: 3–10.

    PubMed  CAS  Google Scholar 

  19. Saban R, Dick EC, Fishleder RI, Buckner CK. Enchancement by parainfluenza 3 infection of contractile responses to substance P and capsaicin in airway smooth muscle from the guinea pig. Am Rev Respir Dis 1987; 136: 586–591.

    PubMed  CAS  Google Scholar 

  20. Jacoby DB, Tamaoki J, Borson DB, Nadel JA. Influenza infection causes airway hyperresponsiveness by decreasing enkephalinase. J Appl Physiol 1988; 64: 2653–2658.

    PubMed  CAS  Google Scholar 

  21. Dusser DJ, Jacoby DB, Djokic TD, Rubenstein I, Borson DB, Nadel JA. Virus induces airway hyperresonsiveness to tachykinins: role of neutral endopeptidase. J Appl Physiol 1989; 67: 1504–1511.

    PubMed  CAS  Google Scholar 

  22. Sekizawa K, Tamaoki J, Graf PD, Basbaum CB, Borson DB, Nadel JA. Enkephalinase inhibitor potentiates mammalian tachykinin-induced contraction in ferret trachea. J Pharmacol Exp Ther 1987; 243: 1211–1217.

    PubMed  CAS  Google Scholar 

  23. Al-Bazzaz F J, Kelsey JG, Kaage WD. Substance P stimulation of chloride secretion by canine tracheal mucosa. Am Rev Respir Dis 1985; 131: 86–89.

    CAS  Google Scholar 

  24. Kondo M, Tamaoki J, Takizawa T. Neutral endopeptidase inhibitor potentiates the tachykinin-induced increase in ciliary beat frequency in rabbit trachea. Am rev Respir Dis 1990; 142: 403–406.

    PubMed  CAS  Google Scholar 

  25. Borson DB, Corrales R, Varsano S, Gold M, Caughey G, et al. Enkephalinase inhibitors potentiate substance P-induced secretion of 35–S04-macromolecules from ferret trachea. Exp Lung Res 1987; 12: 21–36.

    PubMed  CAS  Google Scholar 

  26. Baraniuk JN, Lundgren JD, Okayama M, Goff J, Mullol J, Merida M, et al. Substance P and neurokinin A in human nasal mucosa. Am J Respir Cell Mol Biol 1991; 4: 228–236.

    PubMed  CAS  Google Scholar 

  27. Bar-Shavit Z, Goldman R, Stubinsky Y, Gottlieb P, Fridkin M, Teichberg VI, et al. Enhancement of phagocytosis-A newly found activity of substance P residing in its N-terminal tetrapeptide sequence. Biochem Biophys Res Commun 1980; 4: 1445–1451.

    Google Scholar 

  28. Marasco WA, Showell HJ, Becker EL. Substance P binds to the formylpeptide Chemotaxis receptor on the rabbit neutrophil. Biochem Biophys Res Commun 1981; 99: 1065–1072.

    PubMed  CAS  Google Scholar 

  29. Payan DG, Brewster DR, Goetzl EJ. Specific stimulation of human T-lymphocytes by substance P. J Immunol 1983; 131: 1613–1615.

    PubMed  CAS  Google Scholar 

  30. Ruff MR, Wahl SM, Pert CB. Substance P receptor-mediated Chemotaxis of human monocytes. Peptides 1985; 6: 107–111.

    PubMed  CAS  Google Scholar 

  31. McDonald DM. Respiratory tract infections increase susceptibility to neurogenic inflammation in rat trachea. Am Rev Respir Dis 1988; 137: 1432–1440.

    PubMed  CAS  Google Scholar 

  32. Piedimonte G, Umeno E, McDonald DM, Nadel JA. Sendai virus infection potentiates neurogenic inflammation in the rat trachea. Am Rev Respir Dis 1989; 139: A230.

    Google Scholar 

  33. Saria A, Martling CR, Theodorsson-Norheim E, Gamse R, Hua XY, Lundberg JM. Coexisting peptides in capsaicin-sensitive sensory neurons: Release and actions in the respiratory tract of the guinea-pig. Acta Physiologica Hungarica 1987; 69: 421–424.

    PubMed  CAS  Google Scholar 

  34. Cascieri MA, Bull HG, Mumford RA, Patchet AA, Thornberry NA, Liang T. Carboxyterminal tripeptidyl hydrolysis of substance P by purified rabbit lung angiotensin-converting enzyme and the potentiation of substance P activity in vivo by Captopril and MK-422. mol Pharmacol 1984; 25: 287–293.

    PubMed  CAS  Google Scholar 

  35. Hanson GR, Lovenberg W. Elevation of substance P-like immunoreactivity in rat central nervous system by protease inhibitors. J Neurochem 1980; 35: 1370–1374.

    PubMed  CAS  Google Scholar 

  36. Chubb IW, Hodgson AJ, White GH. Acetylcholinesterase hydrolyzes substance P. Neuroscience 1980; 5: 2065–2072.

    PubMed  CAS  Google Scholar 

  37. Skidgel RA, Engelbrecht A, Johnson AR, Erdos EG. Hydrolysis of substance P and neurotensin by converting enzyme and neutral endopeptidase. Peptides 1984; 5: 769–776.

    PubMed  CAS  Google Scholar 

  38. Murray TC, Jacoby DB. Viral infection increases contractile but not secretory responses to substance P in ferret trachea. J Appl Physiol 1992; 72: 608–611.

    PubMed  CAS  Google Scholar 

  39. Borson DB, Brokaw JJ, Sekizawa K, McDonald DM, Nadel JA. Neutral endopeptidase and neurogenic inflammation in rats with respiratory infections. J Appl Physiol 1989; 66: 2653–2658.

    PubMed  CAS  Google Scholar 

  40. Piedimonte G, McDonald DM, Nadel JA. Glucocorticoids inhibit neurogenic plasma extravasation and prevent virus-potentiated extravasation in the rat trachea. J Clin Invest 1990; 86: 1409–1415.

    PubMed  CAS  Google Scholar 

  41. Dusser DJ, Nadel JA, Sekizawa K, Graf PD, Borson DB. Neutral endopeptidase and angiotensin converting enzyme inhibitors potentiate kinin-induced contraction of ferret trachea. J Pharmacol Exp Ther 1988; 244: 531–536.

    PubMed  CAS  Google Scholar 

  42. Djokic TD, Dusser DJ, Borson DB, Nadel JA. Neutral endopeptidase modulates neurotensin-induced airway contraction. J Appl Physiol 1989; 66: 2338–2343.

    PubMed  CAS  Google Scholar 

  43. Stretton CD, Barnes PJ. Cholecystokinin octapeptide-induced bronchoconstricition in the guinea-pig trachea. Am Rev Respir Dis 1988; 137: 201.

    Google Scholar 

  44. Goetzl EJ, Sreedharan SP, Turck CW, Bridenbaugh R, Malfroy B. Preferential cleavage of amino- and carboxyl-terminal oligopeptides from vasoactive intestinal peptide by human recombinant enkephalinase (neutral endopeptidase, EC 3.4.24.11). Biochem Biophys Res Commun 1988; 158: 980–985.

    Google Scholar 

  45. Erdos EG, Skidgel RA. Neutral endopeptidase 24.11 (enkephalinase) and related regulators of peptide hormones. FASEB J 1989; 3: 145–151.

    PubMed  CAS  Google Scholar 

  46. Proud D, Naclerio RM, Gwaltney JM, Hendley JO. Kinins are generated in nasal secretions during natural rhinovirus colds. J Infect Dis 1990; 161: 120–123.

    PubMed  CAS  Google Scholar 

  47. Carter JK, Cruse LW, Proud D. Kinins are generated in nasal secretions during influenza infections in ferrets. Am Rev Respir Dis 1990; 142: 162–166.

    Google Scholar 

  48. Buckner CK, Songsiridej V, Dick EC, Busse WW. In vivo and in vitro studies of the use of the guinea pig as a model for virus-provoked airway hyperreactivity. Am Rev Respir Dis 1985; 132: 305–310.

    PubMed  CAS  Google Scholar 

  49. Killingsworth CR, Robinson NE, Adams T, Maes RK, Berney C, Rozanski E. Cholingergic reactivity of tracheal smooth muscle following infection with feline herpesvirus-I. J Appl Physiol 1990; 69: 1953–1960.

    PubMed  CAS  Google Scholar 

  50. Fryer AD, Maclagan J. Muscarinic inhibitory receptors in pulmonary parasympathetic nerves in the guinea-pig. Br J Pharmacol 1984; 83: 973–978.

    PubMed  CAS  Google Scholar 

  51. Fryer AD, Maclagan J. Pancuronium and gallamine are antagonists for pre- and postjunctional muscarinic receptors in the guinea-pig lung. Naunyn-Schmied Arch Pharmacol 1987; 335: 367–371.

    CAS  Google Scholar 

  52. Aas P, Maclagan J. Evidence for prejunctional M2 muscarinic receptors in pulmonary cholinergic nerves of the rat. Br J pharmacol 1990; 101: 73–76.

    PubMed  CAS  Google Scholar 

  53. Blaber LC, Fryer AD, Maclagan J. Neuronal muscarinic receptors attenuate vagally-induced contraction of feline bronchial smooth muscle. Br J Pharmacol 1985; 86: 723–728.

    PubMed  CAS  Google Scholar 

  54. Killingsworth CR, Mingfu Y, Robinson NE. Evidence for the absence of a functional role for muscarinic M2 inhibitory receptors in cat trachea in vivo; contrast with in vitro results. Br J Pharmacol 1992; 105: 263–270.

    PubMed  CAS  Google Scholar 

  55. Ito Y, Yoshitomi T. Autoregulation of acetylcholine release from vagus nerves terminals through activation of muscarinic receptors in the dog trachea. Br J Pharmacol 1988; 93: 636–646.

    PubMed  CAS  Google Scholar 

  56. Minette P, Barnes PJ. Prejunctional inhibitory muscarinic receptors on cholinergic nerves in human and guinea-pig airways. J Appl Physiol 1988; 64: 2532–2537.

    PubMed  CAS  Google Scholar 

  57. Minette PJ, Lammers JWJ, Dixon CMS, McCusker MT, Barnes PJ. A muscarinic agonist inhibits reflex bronchoconstriction in normal but not asthmatic subjects. J Appl physiol 1989; 67: 2461–2465.

    PubMed  CAS  Google Scholar 

  58. Ayala LE, Ahmed T. Is there loss of a protective muscarinic receptor in asthma? Chest 1989; 96: 1285–1291.

    PubMed  CAS  Google Scholar 

  59. Fryer AD, Jacoby DB. Parainfluenza virus infection damages inhibitory M2 muscarinic receptors on pulmonary parasympathetic nerves in the guinea-pig. Br J Pharmacol 1991; 102: 267–271.

    PubMed  CAS  Google Scholar 

  60. Sorkness R, Clough JJ, Castleman WL, Lemanske RJ. Virus-induced airway obstruction and parasympathetic hyperresponsiveness in adult rats. Am J Respir Crit Care Med 1994; 150: 28–34.

    PubMed  CAS  Google Scholar 

  61. Schultheis A, Bassett D, Fryer A. Ozone-induced airway hyperresponsiveness and loss of neuronal M2 muscarinic receptor function. J Appl Physiol 1994; 76: 1088–1097.

    PubMed  CAS  Google Scholar 

  62. Fryer AD, Jacoby DB. Function of pulmonary M2 muscarinic receptors in antigen challenged guinea-pigs is restored by heparin and poly-l-glutamate. J Clin Invest 1992; 90: 2292–2298.

    PubMed  CAS  Google Scholar 

  63. Jacoby DB, Gleich GJ, Fryer AD. Human eosinophil major basic protein is an endogenous allosteric antagonist at the inhibitory muscarinic M2 receptor. J Clin Invest 1993; 91: 1314–1318.

    PubMed  CAS  Google Scholar 

  64. Fryer AD, Yarkony KA, Jacoby DB. The effect of leukocyte depletion on pulmonary M2 muscarinic receptor function in parainfluenza virus-infected guinea-pigs. Br J Pharmacol 1994; 112: 588–594.

    PubMed  CAS  Google Scholar 

  65. Peterson GL, Rosenbaum LC, Broderick DJ, Schimerlik MI. Physical properties of the purified cardiac muscarinic acetylcholine receptor. Biochemistry 1986; 25: 3189–3202.

    PubMed  CAS  Google Scholar 

  66. Gies J-P, Landry Y. Sialic acid is selectively involved in the interaction of agonists with M2 muscarinic acetylcholine receptors. Biochem Biophys Res Comm 1988; 150: 673–6980.

    PubMed  CAS  Google Scholar 

  67. Scheid A, Caliguiri LA, Compans RW, Choppin PW. Isolation of paramyxovirus glycoproteins. Association of both hemagglutinating and neuraminidase activities with the larger SV5 glycoprotein. Virology 1972; 50: 640–652.

    PubMed  CAS  Google Scholar 

  68. Boulan ER, Pendergast M. Polarized distribution of viral envelope proteins in the plasma membrane of infected epithelial cells. Cell 1980; 20: 45–54.

    Google Scholar 

  69. Fryer AD, El-Fakahany EE, Jacoby DB. Parainfluenza virus type 1 reduces the affinity of agonists for muscarinic receptors in guinea-pig heart and lung. Eur J Pharmacol 1990; 181: 51–58.

    PubMed  CAS  Google Scholar 

  70. Kahn R, Fryer A, Jacoby DB. Effect of indomethacin on inhibitory M2 muscarinic receptor function in guinea-pig airways: Influence of previous viral infections. Am J Respir Crit Care Med 1994; A899.

    Google Scholar 

  71. Yarkony KA, Fryer AD. The effects of nitric oxide synthase inhibitors on neuronal M2 muscarinic receptors in the lung. Am J Respir Crit Care Med 1994; 149: A860.

    Google Scholar 

  72. Buckner CK, Clayton DE, Ain-Shoka AA, Busse WW, Dick EC, Shult P. Parainfluenza 3 infection blocks the ability of a beta adrenergic receptor to inhibit antigen induced contraction of guinea pig isolated airway smooth muscle. J Clin Invest 1981; 67: 376–384.

    PubMed  CAS  Google Scholar 

  73. Nakazawa H, Sekizawa K, Morikawa M, Yamauchi K, Satoh M, Maeyama K, et al. Viral respiratory infection causes airway hyperresponsiveness and decreases histamine H-methyltransferase activity in guinea pigs. Am J Respir Crit Care med 1994; 149: 1180–1185.

    PubMed  CAS  Google Scholar 

  74. Castleman W, Sorkness R, Lemanske RF, McAlister PK. Viral bronchiolitis during early life induces increased numbers of bronchiolar mast cells and airway hyperrespon¬siveness. Am J Pathol 1990; 137: 821–831.

    PubMed  CAS  Google Scholar 

  75. Sorkness R, Clough J, Castleman W, Lemanske RF. Persistent abnormalities in lung physiology and airway parasympathetic conduction after parainfluenza type 1 infection in adult rats. Am Rev Respir Dis 1992; 145: A462.

    Google Scholar 

  76. Rooney JC, Williams HE. The relationship between proved viral bronchiolitis and subsequent wheezing. J. pediatr 1971; 79: 744747.

    Google Scholar 

  77. Gurwitz D, Mindorff C, Levison H. Increased incidence of bronchial reactivity in children with a history of bronchiolitis. J. Pediatr 1981; 98: 551–555.

    PubMed  CAS  Google Scholar 

  78. Pullan CR, Hey EN. Wheezing, asthma, and pulmonary dysfunction 10 years after infection with respiratory syncytial virus in infancy. Br Med J 1982; 284: 1665–1668.

    CAS  Google Scholar 

  79. Samet JM, Tager IB, Speizer FE. The relationship between respiratory illness in childhood and chronic air-flow obstruction in adulthood. Am Rev Respir Dis 1983; 127: 508–523.

    PubMed  CAS  Google Scholar 

  80. Folkerts G, Verheyen A, Janssen M, Nijkamp FP. Virus-induced airway hyperrespon¬siveness in the guinea pig can be transferred by bronchoalveolar cells. J. Allergy Clin Immunol 1992; 90: 364–372.

    PubMed  CAS  Google Scholar 

  81. Folkerts G, Van Esch B, Janssen M, Nijkamp FP. Virus-induced airway hyperresponsiveness in guinea pigs in vivo: study of broncho-alveolar cell number and activity. Eur J Pharmacol 1992; 228: 219–227.

    PubMed  CAS  Google Scholar 

  82. Folkerts G, Verheyen AKCP, Guens GMA, Folkerts HF, Nijkamp FP. Virus-induced changes in airway responsiveness, morphology, and histamine levels in guinea pigs. Am Rev Respir Dis 1993; 147: 1569–1577.

    PubMed  CAS  Google Scholar 

  83. Folkerts G, DeClerck F, Feijnart I, Span P, Nijkamp FP. Virus-induced airway hyperresponsiveness in the guinea-pig: possible involvement of histamine and inflammatory cells. Br J pharmacol 1993; 108: 1083–1093.

    PubMed  CAS  Google Scholar 

  84. Folkerts G, Vanderlinde HJ, Nijkamp FP. Virus-induced airway hyperresponsiveness in guinea pigs is related to a deficiency in nitric oxide. J Clin Invest 1995; 95: 26–30.

    PubMed  CAS  Google Scholar 

  85. Lemen RJ, Quan SF, Witten ML, Sobonya RE, Ray CG, Grad R. Canine parainflu¬enza type 2 bronchiolitis increases histamine responsiveness in beagle puppies. Am Rev Respir Dis 1990; 141: 199–207.

    PubMed  CAS  Google Scholar 

  86. Miura M, Inoue H, Ichinose M, Shimura S, Katsumata U, Kimura K, et al. Increase in luminal mast cell and epithelial damage may account for increased airway respon¬siveness after viral infection in dogs. Am Rev Respir Dis 1989; 140: 1738–1744.

    PubMed  CAS  Google Scholar 

  87. Scarpace PJ, Bender BS. Viral pneumonia attenuates adenylate cyclase but not beta- adrenergic receptors in murine lung. Am Rev Respir Dis 1989; 140: 1602–1606.

    PubMed  CAS  Google Scholar 

  88. Henry PJ, Rigby PJ, Mackenzie JS, Goldie RG. Effect of respiratory tract viral infection on murine airway B-adrenoceptor function, distribution, and density. Br J Pharmacol 1991; 104: 914–921.

    PubMed  CAS  Google Scholar 

  89. Nagatomo T, Sasaki M, Tsuchihashi H, Imai S. Binding characteristics of 3H-dihy- droalprenolol to ß-adrenoceptors of rat heart treated with neuraminidase. Jap J Phar¬macol 1983; 33: 851–857.

    CAS  Google Scholar 

  90. Kudlacz EM, Shatzer SA, Farrell AM, Baugh LE. Parainfluenza virus type 3 induced alterations in tachykinin NK1 receptors, substance P levels and respiratory functions in guinea pig airways. Eur J Pharmacol 1994; 270: 291–300.

    PubMed  CAS  Google Scholar 

  91. Henry PJ, Goldie RG. ETB but not ETA receptor-mediated contractions to endothelin-1 attenuated by respiratory tract viral infection in mouse airways. Br J Pharmacol 1994; 112: 1188–1194.

    PubMed  CAS  Google Scholar 

  92. Walsh JJ, Dietlein LF, Low FN, Burch GE, Mogabgab WJ. Bronchotracheal response in human influenza. Arch Int Med 1960; 108: 376–388.

    Google Scholar 

  93. Oda T, Akaike T, Hamamoto T, Suzuki F, Hirano T, Maeda H. Oxygen radicals in influenza-induced pathogenesis and treatment with pyran polymer-conjugated SOD. Science 1989; 244: 974–976.

    PubMed  CAS  Google Scholar 

  94. Busse WW. Decreased granulocyte response to isoproterenol in asthma during upper respiratory infections. Am Rev Respir Dis 1977; 115: 783–791.

    PubMed  CAS  Google Scholar 

  95. Sheppard D, Thompson JE, Scypinski L, Dusser D, Nadel JA, Borson DB. Toluene diisocyanate increases airway responsiveness to substance P and decreases airway neutral endopeptidase. J Clin Invest 1988: 1111–1115.

    Google Scholar 

  96. Fryer AD, Jacoby DB. Antigen-induced pulmonary M2 muscarinic receptor dysfunction in guinea-pigs is reversed by heparin and poly-l-glutamate. Br J Pharmacol 1991; 104: 292P.

    Google Scholar 

  97. Golden JA, Nadel JA, Boushey HA. Bronchial hyperreactivity in healthy subjects after exposure to ozone. Am Rev Respir Dis 1978; 118: 287–294.

    PubMed  CAS  Google Scholar 

  98. Cartier A, Thomson NC, Frith PA, Roberts RS, Hargreave FE. Allergen-induced increase in bronchial responsiveness to histamine: relationship to the late asthmatic response and change in airway caliber. J Allergy Clin Immunol 1982; 70: 170–177.

    PubMed  CAS  Google Scholar 

  99. Choi AMK, Jacoby DB. Influenza virus A infection induces interleukin-8 gene expression in human airway epithelial cells. FEBS Lett 1992; 309: 327–329.

    PubMed  CAS  Google Scholar 

  100. Subauste MC, Jacoby DB, proud D. Rhinovirus infection of a human bronchial epithelial cell line (BEAS-2B) induces cytokine release. J Clin Invest 1995; 96: 549–557.

    PubMed  CAS  Google Scholar 

  101. Becker S, Koren HS, Henke DC. Interleukin-8 expression in normal nasal epithelium and its modulation by infection with respiratory syncytial virus and cytokines tumor necrosis factor, interleukin-1 and interleukin-6. Am J Respir Cell Mol Biol 1993; 8: 20–27.

    PubMed  CAS  Google Scholar 

  102. Noah TL, Becker S. Respiratory syncytial virus-induced cytokine production by a human bronchial epithelial cell line. Am J Physiol 1993; 265: L472–L478.

    PubMed  CAS  Google Scholar 

  103. Samuel CE. Antiviral actions of interferon: Interferon-regulated cellular proteins and their surprisingly selective antiviral activities. Virology 1991; 183: 1–11.

    PubMed  CAS  Google Scholar 

  104. Pestka S, Langer JA, Zoon KC, Samuel CE. Interferons and their actions. Ann Rev Biochem 1987; 56: 727–777.

    PubMed  CAS  Google Scholar 

  105. Sen GC, Lengyel P. The interferon system. J Biol Chem 1992; 267: 5017–5020.

    PubMed  CAS  Google Scholar 

  106. Baeuerle PA, Henkel T. Function and activation of NF-KB in the immune system. Ann Rev Immunol 1994; 12: 141–179.

    CAS  Google Scholar 

  107. Ghosh S, Baltimore D. Activation in vitro of NF-TCB by phosphorylation of its inhibitor IKB. Nature 1990; 344: 678–682.

    PubMed  CAS  Google Scholar 

  108. Lenardo MJ, Baltimore D. NF-KB: A pleiotropic mediator of inducible and tissue-specific gene control. Cell 1989; 58: 227–229.

    PubMed  CAS  Google Scholar 

  109. Viscanathan KV, Goodbourn S. Double-stranded RNA activates binding of NF-JCB to an inducible element in the human ß-interferon promoter. EMBO J 1989; 8: 1129–1138.

    Google Scholar 

  110. Kinnula VL, Adler KB, Ackley NJ, Crapo JD. Release of reactive oxygen species by guinea pig tracheal epithelial cells in vitro. Am J Physiol 1992; 262: L708–L712.

    PubMed  CAS  Google Scholar 

  111. Knobil K, Choi AMK, Jacoby DB. The role of reactive oxygen intermediates in NF-/cB activation and manganese superoxide dismutase induction during influenza virus infec¬tion. Am J Respir Crit Care med 1995; 151: A543.

    Google Scholar 

  112. Ida S, Hooks JJ, Siraganian RP, Notkins AL. Enhancement of IgE-mediated histamine release from human basophils by viruses: role of interferon. J Exp Med 1977; 145: 892–906.

    PubMed  CAS  Google Scholar 

  113. Busse WW, Swenson CA, Borden EC, Treuhaft MW, Dick EC, Effect of influenza A virus on leukocyte histamine release. J Allergy Clin Immunol 1983; 71: 382–388.

    PubMed  CAS  Google Scholar 

  114. Busse WW, Cooper W, Warshauer DM, Dick EC, Wallow IHL, ALbrecht R. Impairment of inoproterenol, H2 histamine, and prostaglandin El response of human granulocytes after incubation in vitro with live influenza vaccines. Am Rev Respir Dis 1979; 119: 561–569.

    PubMed  CAS  Google Scholar 

  115. Busse WW, Anderson CL, Dick EC, Warshauer D. Reduced granulocyte response to isoproterenol, histamine, and prostaglandin El after in vitro incubation with rhino virus 16. Am Rev Respir Dis 1980; 122: 641–646.

    PubMed  CAS  Google Scholar 

  116. Lett-Brown MA, Aelvoet M, Hooks JJ, Georgiades JA, Thueson DO, Grant JA. Enhancement of basophil Chemotaxis in vitro by virus-induced interferon. J Clin Invest 1981; 67: 547–552.

    PubMed  CAS  Google Scholar 

  117. Huftel MA, Swensen CA, Borcherding WR, Dick EC, Hong R, Kita H, et al. The effect of T-cell depletion on enhanced basophil histamine release after in vitro incubation with live influenza A virus. Am J Respir Cell Mol Biol 1992; 7: 434–440.

    PubMed  CAS  Google Scholar 

  118. Welliver RC, Kaul TN, Ogra PL. The appearance of cell-bound IgE in respiratory-tract epithelium after respiratory syncytial virus infection. N Engl J Med 1980; 303: 1198–1202.

    PubMed  CAS  Google Scholar 

  119. Welliver RC, Wong DT, Sun M, Middleton E, Vaughan RS, Ogra PL. The development of respiratory syncytial virus-specific IgE and the release of histamine in nasopharyngeal secretions after infection. N. Engl J Med 1981; 305: 841–846.

    PubMed  CAS  Google Scholar 

  120. Busse WW, Vrtis RF, Steiner R, Dick EC. In vitro incubation with influenza virus primes human polymorphonuclear leukocyte generation of superoxide. Am J Respir Cell Mol Biol 1991; 4: 347–354.

    PubMed  CAS  Google Scholar 

  121. Akaike T, Ando M, Oda T, Doi T, Ijiri S, Araki S, et al. Dependence on 02-generation by xanthine oxidase of pathogenesis of influenza virus infection in mice. J Clin Invest 1990; 85: 739–745.

    PubMed  CAS  Google Scholar 

  122. Jacoby DB, Choi AMK. Induction of antioxidants and early stress response genes in virus-infected lungs. Am Rev Respir Dis 1993; 147: A243.

    Google Scholar 

  123. Jacoby DB, Choi AMK. Influenza virus infection induces differential expression of antioxidant genes in human airway epithelial cells. Free Radical Biol Med 1994; 6: 821–824.

    Google Scholar 

  124. Coyle AJ, Erard F, Bertrand C, Walti S, Pircher H, Le GG. Virus-specific CD8+ cells can switch to interleukin 5 production and induce airway eosinophilia. J Exp Med 1995; 181: 1229–1233.

    PubMed  CAS  Google Scholar 

  125. Graham MB, Braciale VL, Braciale TJ. Influenza virus-specific CD4 + T helper type 2 T lymphocytes do not promote recovery from experimental virus infection. J Exp Med 1994; 180: 1273–1282.

    PubMed  CAS  Google Scholar 

  126. van Oosterhout AJ, van Ark I, Folkerts G, van der Linde HJ, Savelkoul HF, Verheyen AK, et al. Antibody to interleukin-5 inhibits virus-induced airway hyperresponsiveness to histamine in guinea pigs. Am J respir Crit Care Med 1995; 151: 177–183.

    PubMed  Google Scholar 

  127. Bergstrand H, Bjornsson A, Frick IM, Lundquist B, Nystrom I, Pauwels R, et al. Antigen-induced release of histamine from serosal mast cells, lung, and tracheal tissue: variation with tissue and rat strain in relation to serum IgE-antibody level. Agents Actions 1983; 13: 288–300.

    PubMed  CAS  Google Scholar 

  128. Sorkness R, Lemanske RF, Castleman W. Persistent airway hyperresponsiveness after neonatal viral bronchiolitis in rats. J Appl Physiol 1991; 70: 375–383.

    PubMed  CAS  Google Scholar 

  129. Sorden SD, Castleman WL. Brown Norway rats are high responders to bronchiolitis, pneumonia, and bronchiolar mastocytosis induced by parainfluenza virus. Exp Lung Res 1991; 17: 1025–1045.

    PubMed  CAS  Google Scholar 

  130. Sorden SD, Castleman WL. Virus-induced increases in airway mast cells in brown Norway rats are associated with enhanced pulmonary viral replication and persisting lymphocytic infiltration. Exp Lung Res 1995; 21: 197–213.

    PubMed  CAS  Google Scholar 

  131. Calhoun WJ, Dick EC, Schwartz LB, Busse WW. A common cold virus, rhinovuris 16, potentiates airway inflammation after segmental antigen bronchoprovocation in allergic subjects. J Clin Invest 1994; 94: 2200–2208.

    PubMed  CAS  Google Scholar 

  132. Weiss ST, Tager IB, Munoz A, Speizer FE. The relationship of respiratory infections in early childhood to the occurrence of increased levels of bronchial responsiveness and atopy. Am Rev Respir Dis 1985; 131: 573–578.

    PubMed  CAS  Google Scholar 

  133. Martinez FD. Viral infections and the development of asthma. Am J Respir Crit Care Med 1995; 151: 1644–1647.

    PubMed  CAS  Google Scholar 

  134. Castleman WL. Alterations in pulmonary ultrastructure and morphometric parameters induced by parainfluenza (Sendai) virus in rats during postnatal growth. Am J Pathol 1984; 114: 323–335.

    Google Scholar 

  135. Castleman W, Sorkness R, Lemanske RF, Grasee G, Suyemoto MM. Neonatal viral bronchiolitis and pneumonia induces bronchiolar hypoplasia and alveolar dysplasia in rats. Lab Invest 1988; 59: 387–396.

    PubMed  CAS  Google Scholar 

  136. Jakab GJ, Astry CL, Warr GA. Alveolitis induced by influenza virus. Am Rev Respir Dis 1983; 128: 730–739.

    PubMed  CAS  Google Scholar 

  137. Hegele RG, Hayashi S, Bramley AM. Hogg JC. Persistence of respiratory syncytial virus genome and protein after acute bronchiolitis in guinea pigs. Chest 1994; 105: 1848–1854.

    PubMed  CAS  Google Scholar 

  138. Quan SF, Lemen RJ, Witten ML, Sherrill DL, Grad R, Sobonya RE, et al. Changes in lung mechanics and reactivity with age after viral bronchiolitis in beagle puppies. J Appl Physiol 1990; 69: 2034–2042.

    PubMed  CAS  Google Scholar 

  139. Quan SF, Witten ML, Grad R, Ray CG, Lernen RJ. Changes in lung mechanics and histamine responsiveness after sequential canine adenovirus 2 and canine parainfluenza 2 virus infection in beagle puppies. Pediatr Pulmonol 1991; 10: 236–243.

    PubMed  CAS  Google Scholar 

  140. Castleman WL. Bronchiolitis obliterans and pneumonia induced in young dogs by experimental adenovirus infection. Am J Pathol 1985; 119: 495–504.

    PubMed  CAS  Google Scholar 

  141. Witten ML, McKee JL, Lantz RC, Hays AM, Quan SF, Sobonya RE, et al. Fractal and morphometric analysis of lung structures after canine adenovirus-induced bronchiolitis in beagle puppies. Pediatr Pulmonol 1993; 16: 62–68.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Jacoby, D.B. (1996). Virus-Induced Bronchial Hyperreactivity. In: Raeburn, D., Giembycz, M.A. (eds) Airways Smooth Muscle: Modelling the Asthmatic Response In Vivo . Respiratory Pharmacology and Pharmacotherapy. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9000-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9000-7_6

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9863-8

  • Online ISBN: 978-3-0348-9000-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics