Skip to main content

Abstract

The guinea pig has long been recognised as an appropriate experimental animal in which several of the pathological characteristics of asthma can be modelled [1]. Such pathology includes the development of polyphasic reactions [2, 3], the selectively eosinophilic nature of the pulmonary cell infiltrate and the induction of airways hyperresponsiveness following exposure of actively sensitized animals to allergen [4–6]. Moreover, several of these pathological characteristics are modified by established anti-asthma therapies in the guinea pig [6],indication the utility of this species as a relevant animal model for novel drug selection.

Author for correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kallos P, Kallos L. Experimental asthma in guinea-pigs revisited. Int Arch Allergy Appl Immunol 1984; 74: 79–85.

    Google Scholar 

  2. Hutson PA, Church MK, Clay TP, Miller P, Holgate ST. Early and late-phase bronchoconstriction after allergen challenge of nonanaesthetized guinea pigs. 1. The association of disordered airway physiology to leukocyte infiltration. Am Rev Respir Dis 1988; 137: 548–557.

    PubMed  CAS  Google Scholar 

  3. Santing RE, Olymulder CG, Zaagsma J, Meurs H. Relationships among allergen-induced early and late phase airway obstructions, bronchial hyperreactivity, and inflammation in conscious, unrestrained guinea pigs. J Allergy Clin Immunol 1994; 93: 1021–1030.

    PubMed  CAS  Google Scholar 

  4. Dunn CJ, Elliott GA, Oosteveen JA, Richards IM. Development of prolonged eosinophil-rich inflammatory leukocyte infiltration in the guinea-pig asthmatic response to ovalbumin inhalation. Am Rev Respir Dis 1988; 137: 541–547.

    PubMed  CAS  Google Scholar 

  5. Ishida K, Kelly LJ, Thompson RJ, Beattie LL, Schellenberg RR. Repeated antigen challenge induces airway hyperresponsiveness with tissue eosinophilia in guinea-pigs. J Appl Physiol 1989; 67: 1133–1139.

    PubMed  CAS  Google Scholar 

  6. Sanjar S, Aoki S, Kristersson A, Smith D, Morley J. Antigen challenge induces pulmonary airway eosinophil accumulation and airway hyperreactivity in sensitized guinea-pigs: the effect of anti-asthma drugs. Br J Pharmacol 1990; 99: 679–686.

    PubMed  CAS  Google Scholar 

  7. Hargreave FE, Ryan G, Thompson NC, O’Byrne PM. Latimer K, Juniper EF et al. Bronchial responsiveness to histamine or methacholine in asthma: measurement and clinical significance. J Allergy Clin Immunol 1981; 68: 346–355.

    Google Scholar 

  8. Snashall PD. Mechanisms of hypersensitivity. General review. In: Nadel JA, Pauwels R, Snashall PD, editors. Bronchial hyperresponsiveness. Normal and abnormal control assessment and therapy. London: Blackwell, 1987: 257–314.

    Google Scholar 

  9. Hsuie T, Garland A, Ray DW, Hershenson MB, Leff AR, Solway J. Endogenous sensory neuropeptide release enhances non-specific airway responsiveness in guinea-pigs. Am Rev Respir Dis 1992; 146: 148–153.

    Google Scholar 

  10. Murlas CG, Roum JH. Sequence of pathologic changes in the airways mucosa of guinea-pigs during ozone-induced bronchial hyperreactivity. Am Rev Respir Dis 1985; 131: 314–320.

    PubMed  CAS  Google Scholar 

  11. James AL, Dirks P, Ohtaka H, Schellenberg RR, Hogg JC. Airway responsiveness to intravenous and inhaled acetylcholine in the guinea-pig after cigarette smoke exposure. Am Rev Respir Dis 1987; 136: 1158–1162.

    PubMed  CAS  Google Scholar 

  12. Fryer AD, Jacoby DB. Parainfluenza virus infection damages inhibitory M2 muscarinic receptors on pulmonary parasympathetic nerves in the guinea-pig. Br J Pharmacol 1991; 102: 267–271.

    PubMed  CAS  Google Scholar 

  13. Ney UM. Propranolol-induced airway hyperreactivity in guinea-pigs. Br J Pharmacol 1983; 79: 1003–1009.

    PubMed  CAS  Google Scholar 

  14. Sanjar S, Kristersson A, Mazzoni L, Morley J, Schaeublin E. Increased airway reactivity in the guinea-pig follows exposure to intravenous isoprenaline. J Physiol 1990; 425: 43–54.

    PubMed  CAS  Google Scholar 

  15. Mitchell HW, Adcock J. Potency of several non-steroidal antiinflammatory drugs on airway responses to histamine. Eur J Pharmacol 1987; 141: 467–470.

    PubMed  CAS  Google Scholar 

  16. Chapman ID, Kristersson A, Mathelin G, Schaeublin E, Mazzoni L, Boubekeur K et al. Effects of a potassium channel opener (SDZ PCO 400) on guinea-pig and human pulmonary airways. Br J Pharmacol 1992; 106: 423–429.

    PubMed  CAS  Google Scholar 

  17. Siriganian RP, Osier AG. Destruction of rabbit platelets in the allergic response of sensitized leukocytes. 1. Demonstration of a fluid phase intermediate. J Immunol 1971; 106: 1244–1251.

    Google Scholar 

  18. Benveniste J, Henson PM, Cochrane CG. Leucocyte-dependent histamine release from rabbit platelets. The role of IgE, basophils and a platelet-activating factor. J Exp Med 1972; 136: 1356–1377.

    PubMed  CAS  Google Scholar 

  19. Demopolous CA, Pinckard RN, Hanahan DJ. Platelet-activating factor. Evidence for l-O-alkyl-2-acetyl-sn-glyceryl-3-phosphocholine as the active component. A new class of lipid chemical mediators. J Biol Chem 1979; 254: 9355–9358.

    Google Scholar 

  20. Benveniste J, Tence M, Varenne P, Bidault J, Boulet C, Polonsky J. Semie-synthese et structure proposee du facteur activant les plaquettes (PAF); Paf-acether, un alkyl ether analogue de la lysophophatidylcholine. C R Acad Sci 1979; 289: 1037–1040.

    CAS  Google Scholar 

  21. Blank ML, Snyder F, Byers LW, Brooks B, Muirhead EE. Anti hypertensive activity of an alkyl ether analog of phosphatidylcholine. Biochem Biophys Res Commun 1979; 90: 1194–1200.

    PubMed  CAS  Google Scholar 

  22. Braquet P, Touqui L, Shen TY, Vargaftig BB. Perspectives in platelet-activating factor research. Pharmacol Rev 1987; 39: 97–118.

    PubMed  CAS  Google Scholar 

  23. Renooij W, Snyder FF. Biosynthesis of l-alkyl-2-acetyl-sn glycerol-3-phosphorylcholine (platelet-activating factor) and a hypotensive lipid by cholinephosphotransferase in various rat tissues. Biochem Biophys Acta 1981; 663: 545–556.

    PubMed  CAS  Google Scholar 

  24. Snyder F. Chemical and biochemical aspects of platelet-activating factor: a novel class of acetylated ether-linked choline phospholipids. Med Res Rev 1985; 5: 107–140.

    PubMed  CAS  Google Scholar 

  25. Latrigue-Mattei C, Godeneche D, Chabard JL, Petie J, Berger JA. Pharmacokinetic study of 3H-labelled Paf-acether. II. Comparison with 3H-labelled lyso-Paf-acether after intravenous administration in the rabbit and protein binding. Agents Actions 1984; 15: 643–648.

    Google Scholar 

  26. Clay KL, Murphy RC, Andres JL, Lynch J, Henson PM. Structure elucidation of platelet-activating factor derived from human neutrophils. Biochem Biophys Res Commun 1984; 121: 815–825.

    PubMed  CAS  Google Scholar 

  27. Lee TC, Lenihan DJ, Malone B, Roddy LL, Wasserman SI. Increased biosynthesis of platelet-activating factor in activated human eosinophils. J Biol Chem 1984; 259: 5526–5530.

    PubMed  CAS  Google Scholar 

  28. Arnoux B, Duval D, Benveniste J. Release of platelet-activating factor (PAF-acether) from alveolar macrophages by calcium ionophore A23187 and phagocytosis. Eur J Clin Invest 1980; 10: 437–441.

    PubMed  CAS  Google Scholar 

  29. Lynch JM, Henson PM. The intracellular retention of newly synthesized platelet-activating factor. J Immunol 1986; 137: 2653–2661.

    PubMed  CAS  Google Scholar 

  30. Chignard M, LeCouedic JP, Vargaftig BB, Benveniste J. Platelet-activating factor (PAF-acether) secretion from platelets: effect of aggregating agents. Br J Haematol 1980; 46: 455–464.

    PubMed  CAS  Google Scholar 

  31. Camussi G, Aglietta M, Malavasi F, Tetta C, Piacibello W, Sanavio F et al. The release of platelet-activating factor from human endothelial cells in culture. J Immunol 1983; 131: 2397–2403.

    PubMed  CAS  Google Scholar 

  32. Cunningham FM, Leigh I, Mallet AI. The production of platelet-activating factor (PAF) by human epidermal cells. Br J Pharmacol 1987; 90: 117P.

    Google Scholar 

  33. Ukena D, Dent G, Burke FW, Robaut C, Sybrecht GW, Barnes PJ. Radioligand binding of antagonists of platelet-activating factor to human platelets. FEBS Lett 1988; 228: 285–289.

    PubMed  CAS  Google Scholar 

  34. O’Flaherty JT, Surles JR, Redman J, Jacobson D, Piantadosi C, Wykle RL. Binding and metabolism of platelet-activating factor by human neutrophils. J Clin Invest 1986; 78: 381–388.

    PubMed  Google Scholar 

  35. Hwang S-B, Lam M-H, Shen TY. Specific binding sites for platelet-activating factor in human lung tissues. Biochem Biophys Res Commun 1985; 128: 972–979.

    PubMed  CAS  Google Scholar 

  36. Honda Z-I, Nakamura M, Miki H, Minami M, Watanabi T, Seyama Y et al. Cloning by functional expression of platelet-activating factor receptor from guinea-pig lung. Nature 1991; 349: 342–346.

    PubMed  CAS  Google Scholar 

  37. Nakamura M, Honda ZI, Izumi T, Sakanaka C, Mutoh H, Minami M et al. Molecular cloning and expression of platelet-activating factor receptor from human leukocytes. J Biol Chem 1991; 266: 20400–20405.

    PubMed  CAS  Google Scholar 

  38. Chao W, Olson MS. Platelet-activating factor: receptors and signal transduction. Biochem J 1993; 292: 617–629.

    PubMed  CAS  Google Scholar 

  39. Henson PM. Extracellular and intracellular activities of PAF. In: Snyder F, editor. Platelet-activating factor and related lipid mediators. New York: Plenum, 1974: 255–271.

    Google Scholar 

  40. Barnes PJ, Fan Chung K, Page CP. Platelet-activating factor as a mediator of allergic disease. J Allergy Clin Immunol 1988; 81: 919–934.

    PubMed  CAS  Google Scholar 

  41. Tanaka S, Kasuya Y, Masuda Y, Shigenobu K. Studies of the hypotensive effects of platelet activating factor (PAF, l-o-alkyl-2-acetyl-sn-glyceryl-3-phosphorycholine) in rats, guinea-pigs, rabbits and dogs. J Pharm Dyn 1983; 6: 866–874.

    CAS  Google Scholar 

  42. Hamasaki Y, Mojarad M, Saga T, Tai HH, Said SI. Platelet-activating factor raises airway and vascular pressures and induces edema in lungs perfused with platelet-free solutions. Am Rev Respir Dis 1984; 129: 742–746.

    PubMed  CAS  Google Scholar 

  43. Levi R, Burke JA, Guo ZG, Hattori Y, Hoppens CM, McManus LM et al. Acetyl glyceryl ether phosphorycholine (AGEPC): a putative mediator of cardiac anaphylaxis in the guinea-pig. Circ Res 1984; 54: 117–124.

    PubMed  CAS  Google Scholar 

  44. Vargaftig BB, Lefort J, Chignard M, Benveniste J. Platelet-activating factor induces a platelet-dependent bronchoconstriction unrelated to the formation of prostaglandin derivatives. Eur J Pharmacol 1980; 65: 185–192.

    PubMed  CAS  Google Scholar 

  45. Rogers DF, Aursudkij B, Evans TW, Belvisi MG, Chung KF, Barnes PJ. Platelet-activating factor increases protein exudation but not mucus secretion in guinea pig trachea in vivo. Am Rev Respir Dis 1987; 135: A160.

    Google Scholar 

  46. Aursudkij B, Rodgers DF, Evans TW, Belvisi MG, Chung KF, Barnes PJ. Reduced tracheal mucus velocity in the guinea-pig in vivo by platelet activating factor. Am Rev Respir Dis 1987; 135: A160.

    Google Scholar 

  47. Lee TC, Lenihan D, Malone B, Roddy LL, Wasserman SI. Increased biosynthesis of platelet-activating factor in activated human eosinophils. J Biol Chem 1984; 259: 5526–5530.

    PubMed  CAS  Google Scholar 

  48. Mazzoni L, Morley J, Page CP, Sanjar S. Induction of hyperreactivity by platelet-activating factor. J Physiol 1985; 365: 107P.

    Google Scholar 

  49. Chung KF, Aizawa H, Leikauf GD, Ueki IF, Evans TW, Nadel JA. Airway hyperresponsiveness induced by platelet-activating factor: role of thromboxane generation. J Pharmacol Exp Ther 1986; 236: 580–584.

    PubMed  CAS  Google Scholar 

  50. Robertson DN, Page CP. Effect of platelet agonists on airway reactivity and intrathoracic platelet accumulation. Br J Pharmacol 1987; 92: 105–111.

    PubMed  CAS  Google Scholar 

  51. Anderson GP, Fennessy MR. Lipoxygenase metabolites mediate increased airways responsiveness to histamine after acute platelet-activating factor exposure in the guinea-pig. Agents Actions 1988; 24: 8–19.

    PubMed  CAS  Google Scholar 

  52. Fitzgerald MF, Lees IW, Parente L, Payne AN. Exposure to PAF-acether aerosol induces airway hyperresponsiveness in guinea-pigs. Br J Pharmacol 1987; 90: 112P.

    Google Scholar 

  53. Coyle AJ, Urwin SC, Page CP, Touvay C, Villain B, Braquet P. The effect of selective PAF antagonist BN 52021 on PAF and antigen-induced bronchial hyperreactivity and eosinophil accumulation. Eur J Pharmacol 1988; 148: 51–58.

    PubMed  CAS  Google Scholar 

  54. Mencia-Huerta JM, Touvey C, Pfister A, Braquet P. Effects of long term administration of platelet activating factor on pulmonary responsiveness and morphology in the guinea-pig. Int Arch Allergy Appl Immunol 1989; 88; 154–156.

    PubMed  CAS  Google Scholar 

  55. Stimler NP, O’Flaherty JT. Spasmogenic properties of platelet-activating factor: Evidence for a direct mechanism in the contractile response of pulmonary tissues. Am J Pathol 1983; 113: 75–84.

    PubMed  CAS  Google Scholar 

  56. Stimler-Gerard NP. Parasympathetic stimulation as a mechanism for platelet-activating factor-induced contractile responses in the lung. J Pharmacol Exp Ther 1986; 237: 209–213.

    PubMed  CAS  Google Scholar 

  57. Lefort J, Rotilio D, Vargaftig BB. The platelet-independent release of thromboxane A2 by PAF-acether for guinea pig lung involves mechanisms distinct from those for leukotriene C4 and bradykinin. Br J Pharmacol 1984; 82: 525–531.

    Google Scholar 

  58. Robertson DN, Coyle AJ, Rhoden KJ, Grandordy B, Page CP, Barnes PJ. The effect of platelet-activating factor on histamine and muscarinic receptor function in guinea-pig airways. Am Rev Respir Dis 1988; 137: 1317–1322.

    PubMed  CAS  Google Scholar 

  59. Evans TW, Chung K, Rogers DF, Barnes PJ. Effect of platelet-activating factor on airway vascular permeability: possible mechanisms. J Appl Physiol 1987; 63: 479–484.

    PubMed  CAS  Google Scholar 

  60. Pretolani M, Lefort J, Vargaftig BB. Limited interference of specific PAF antagonists with hyper-responsiveness to PAF itself on lungs from actively sensitized guinea-pigs. Br J Pharmacol 1989; 97: 433–442.

    PubMed  CAS  Google Scholar 

  61. James AL, Pare PD, Hogg JC. The mechanics of airway narrowing in asthma. Am Rev Respir Dis 1989; 139: 242–246.

    PubMed  CAS  Google Scholar 

  62. Hoshiko K, Morley J. Allergic bronchospasm and airway hyperreactivity in the guinea- pig. Jpn J Pharmacol 1993; 63: 151–157.

    PubMed  CAS  Google Scholar 

  63. Braquet P, Etienne A, Clostre F. Down-regulation of beta2 -adrenergic receptors by PAF-acether and its inhibition by the PAF-acether antagonist BN 52021. Prostaglandins 1985; 30: 721–726.

    Google Scholar 

  64. Barnes PJ, Grandordy BM, Page CP, Rhoden KJ, Robertson DN. The effect of platelet activating factor on pulmonary ß-adrenoceptors. Br J Pharmacol 1987; 90: 707–715.

    Google Scholar 

  65. Perretti F, Manzini S. Activation of capsaicin-sensitive sensory fibers modulates PAF-induced airway hyperresponsiveness in anaesthetized guinea-pigs. Am Rev Respir Dis 1993; 148: 927–931.

    PubMed  CAS  Google Scholar 

  66. Martins MA, Shore SA, Drazen JM. Release of tachykinins by histamine, methacholine, PAF, LTD4 and substance P from guinea pig lungs. Am J Physiol 1991; 261: L449–455.

    PubMed  CAS  Google Scholar 

  67. Rodrigue F, Hoff P, Touvay C, Vilain B, Carre C, Mencia-Huerta JM et al. Release of immunoreactive substance P and vasoactive intestinal peptide (VIP) from guinea pig upper airways by platelet activating factor (PAF-acether). Prostaglandins 1987; 34: A178.

    Google Scholar 

  68. Hsieu TR, Garland A, Ray DW, Hershenson MB, Leff AR, Solway J. Endogenous sensory neuropeptide release enhances nonspecific airway responsiveness in guinea pigs. Am Rev Respir Dis 1992; 146: 148–153.

    Google Scholar 

  69. Mapp CE, Fabbri LM, Boniotti A, Maggi CA. Prostacyclin activates tachykinin release from capsaicin-sensitive afferents in guinea pig bronchi through a Ruthenium Red-sensitive pathway. Br J Pharmacol 1991; 104: 49–52.

    PubMed  CAS  Google Scholar 

  70. Smith D, Sanjar S, Morley J. The effect of prophylactic anti-asthma drugs on PAF-induced platelet accumulation in the thorax of the guinea pig. Jpn J Pharmacol 1989; 51: 161–166.

    PubMed  CAS  Google Scholar 

  71. Robertson DN, Page CP. Effect of platelet agonists on airway reactivity and intrathoracic accumulation. Br J Pharmacol 1987; 92: 105–111.

    PubMed  CAS  Google Scholar 

  72. Sanjar S, Smith D, Kristersson A. Incubation of platelets with PAF produces a factor which causes airway hyperreactivity in guinea-pigs. Br J Pharmacol 1989; 96: 75P.

    Google Scholar 

  73. Morley J, Chapman ID, Sanjar S. Actions of ketotifen on PAF-induced airway hyperreactivity in the anaesthetized guinea-pig. Br J Pharmacol 1989; 96: 76P.

    Google Scholar 

  74. Barnes PJ. Asthma as an axon reflex. Lancet 1986; 1: 242–245.

    PubMed  CAS  Google Scholar 

  75. Sanjar S, Aoki S, Boubekeur K, Chapman ID, Smith D, Kings MA et al. Eosinophil accumulation in pulmonary airway of guinea-pigs induced by exposure to an aerosol of platelet-activating factor: effect of anti-asthma drugs. Br J Pharmacol 1990; 99: 267–272.

    PubMed  CAS  Google Scholar 

  76. Sanjar S, Aoki S, Boubekeur K, Burrows L, Colditz I, Chapman I, Morley J. Inhibition of PAF-induced eosinophil accumulation in pulmonary airways of guinea-pigs by anti-asthma drugs. Jpn J Pharmacol 1989; 51: 167–172.

    PubMed  CAS  Google Scholar 

  77. Colditz IG, Topper EK. The effect of systemic treatment with platelet activating factor on the migration of eosinophils to lung, pleural and peritoneal cavities in the guinea pig. Int Arch Allergy Appl Immunol 1991; 95: 94–96.

    PubMed  CAS  Google Scholar 

  78. Chapman ID, Foster A, Morley J. The relationship between inflammation and hyperreactivity of the airways in asthma. Clin Exp Allergy 1993; 23: 168–171.

    PubMed  CAS  Google Scholar 

  79. Handley DA. Preclinical and clinical pharmacology of platelet-activating factor receptor antagonists. Med Res Rev 1990; 10: 351–370.

    PubMed  CAS  Google Scholar 

  80. Seeds EA, Kilimus N, Coyle AJ, Page CP. The effect of the selective PAF antagonist WEB 2170 on PAF and antigen-induced bronchial hyperresponsiveness and inflammation. Eur J Pharmacol 1990; 183: 1131P.

    Google Scholar 

  81. Dixon EJ, Wilsoncroft P, Robertson DN, Page CP. The effect of Paf antagonists on bronchial hyperresponsiveness induced by Paf, propranolol or indomethacin. Br J Pharmacol 1989; 97: 717–722.

    PubMed  CAS  Google Scholar 

  82. Sanjar S, Smith D, Schaeublin E, Kristersson A, Chapman ID, Mazzoni L et al. The effect of prophylactic anti-asthma drugs on PAF-induced airway hyperreactivity. Jpn J Pharmacol 1989; 51: 151–160.

    PubMed  CAS  Google Scholar 

  83. Takehana Y, Hamano S, Kikuchi S, Komatsu H, Okegawa T, Ikeda S. Inhibitory action of OKY-046. HC1, a specific TXA2 synthetase inhibitor, on platelet activating factor (PAF)-induced airway hyperresponsiveness of guinea-pigs. Role of TXA2 in development of PAF-induced non-specific airway hyperresponsiveness. Jpn J Pharmacol 1990; 52: 621–630.

    PubMed  CAS  Google Scholar 

  84. Raeburn D, Underwood S, Lewis S, Woodman VR, Battram CH, Tomkinson A et al. Anti-inflammatory and bronchodilator properties of RP 73401, a novel and selective phosphodiesterase type IV inhibitor. Br J Pharmacol 1994; 113: 1423–1431.

    PubMed  CAS  Google Scholar 

  85. Pepys J. Immunopathology of allergic lung disease. Clin Allergy 1973; 3: 1–22.

    PubMed  CAS  Google Scholar 

  86. Booij-Noord HJ, Orie NGM, De Vries K. Immediate and late bronchial obstructive reactions to inhalations of house dust and protective effects of disodium cromoglycate and prednisolone. J Allergy Clin Immunol 1971; 48: 344–354.

    PubMed  CAS  Google Scholar 

  87. O’Byrne PM, Dolovich J, Hargreave FE. Late asthmatic responses. Am Rev Respir Dis 1987; 136: 740–751.

    PubMed  Google Scholar 

  88. Durham SR, Graneek BJ, Hawkins R, Newman Taylor AJ. The temporal relationship between increases in airway responsiveness to histamine and late asthmatic responses induced by occupational agents. J Allergy Clin Immunol 1987; 79: 398–406.

    PubMed  CAS  Google Scholar 

  89. Lai CKW, Twentyman OP, Holgate ST. The effect of an increase in inhaled allergen dose after rimiterol hydrobromide on the occurrence and magnitude of the late asthmatic response and the associated change in nonspecific bronchial responsiveness. Am Rev Respir Dis 1989; 140: 917–923.

    PubMed  CAS  Google Scholar 

  90. Ishizaka K. Mechanisms of reagenic hypersensitivity. Clin Allergy 1971; 1: 9–24.

    CAS  Google Scholar 

  91. Ovary Z, Kaplan B, Kojima S. Characteristics of guinea pig IgE. Int Arch Allergy Immunol 1976; 51: 416–428.

    CAS  Google Scholar 

  92. Andersson P. Antigen-induced bronchial anaphylaxis in actively sensitized guinea-pigs: anti-anaphylactic effects of sodium cromoglycate and aminophylline. Br J Pharmacol 1980; 69: 467–472.

    PubMed  CAS  Google Scholar 

  93. Iijima H, Ishima M, Yamuchi K, Chao CL, Kimura K, Shimura S et al. Bronchoalveolar lavage and histologic characterization of late asthmatic response in guinea-pigs. Am Rev Respir Dis 1987; 136: 922–929.

    PubMed  CAS  Google Scholar 

  94. Lellouch-Tubiana A, Lefort J, Simon M, Pfister A, Vargaftig BB. Eosinophil recruitment into guinea-pig lungs after PAF-acether and allergen administration. Am Rev Respir Dis 1988; 137: 948–954.

    PubMed  CAS  Google Scholar 

  95. Ishida K, Thomson RJ, Beattie LL, Wiggs B, Schellenberg RR. Inhibition of antigen-induced airway hyperresponsiveness, but not acute hypoxia nor airway eosinophilia, by an antagonist of platelet-activating factor. J Immunol 1990; 114: 3907–3911.

    Google Scholar 

  96. Featherstone RL, Hutson PA, Holgate ST, Church MK. Active sensitization of guinea-pig airways in vivo enhances in vivo and in vitro responsiveness. Eur Respir J 1988; 1: 839–845.

    PubMed  CAS  Google Scholar 

  97. Popa V, Douglas JS, Bouhuys A. Airway responses to histamine, acetylcholine and propranolol in anaphylactic hypersensitivity in guinea-pigs. J Allergy Clin Immunol 1973; 51: 344–356.

    PubMed  CAS  Google Scholar 

  98. Daffonchio L, Payne AN, Lees IW, Whittle BR J. Immediate anaphylactic bronchocon- striction induces airway hyperreactivity in anaesthetized guinea-pigs. Br J Pharmacol 1988; 94: 663–668.

    CAS  Google Scholar 

  99. Daffonchio L, Payne AN, Lees IW, Whittle BRJ. Airway hyperreactivity follows anaphylactic microshock in anaesthetized guinea-pigs. Eur J Pharmacol 1989; 161: 135–142.

    PubMed  CAS  Google Scholar 

  100. Komatsu H, Takehana Y, Kikuchi S, Kojima M, Hamano S, Kusama H et al. Effect of a thromboxane A2 synthetase inhibitor (OKY-046.HC1) on airway hyperresponsiveness in guinea-pigs. Eur J Pharmacol 1990; 184: 87–95.

    PubMed  CAS  Google Scholar 

  101. Underwood SL, Lewis SA, Raeburn D. RP 59227, a novel PAF receptor antagonist: effects in guinea pig models of airway hyperreactivity. Eur J Pharmacol 1992; 210: 97–102.

    PubMed  CAS  Google Scholar 

  102. Havil AM, Van Valen RG, Handley DA. Prevention of non-specific airway hyperreactivity after allergen challenge in guinea-pigs by the PAF receptor antagonist SDZ 64–412. Br J Pharmacol 1990; 99: 396–400.

    Google Scholar 

  103. Campos MG, Seminario M-C, Shute JK, Hunt TC, Holgate ST, Church MK. Eosinophils in a guinea pig model of allergic airways disease. In: Gleich GJ, Kay AB, editors. Eosinophils in allergy and inflammation. New York: Marcel Dekker, 1994: 379–393.

    Google Scholar 

  104. Laitinen LA, Heino M, Laitinen A, Kava T, Haahtela T. Damage of the airway epithelium and bronchial hyperreactivity in patients with asthma. Am Rev Respir Dis 1985; 131: 599–606.

    PubMed  CAS  Google Scholar 

  105. Flavahan NA, Aarhus LL, Rimele TJ, Vanhoutte PM. The respiratory epithelium inhibits bronchial smooth muscle tone. J Appl Physiol 1985; 58: 834–838.

    PubMed  CAS  Google Scholar 

  106. Goldie RG, Papadimitriou JM, Paterson WJ, Rigby PJ, Self HM, Spina D. Influence of the epithelium on responsiveness of guinea-pig isolated trachea to contractile and relaxant agonists. Br J Pharmacol 1986; 87: 5–14.

    PubMed  CAS  Google Scholar 

  107. Vanhoutte PM. Epithelium-derived relaxant factor(s) and bronchial reactivity. Am Rev Respir Dis 1988; 138: S24–S30.

    PubMed  CAS  Google Scholar 

  108. Hay DWP, Raeburn D, Farmer SG, Flemmin WW, Fendan JS. Epithelium modulates the reactivity of ovalbumin-sensitized guinea-pig airway smooth muscle. Life Sci 1986; 38: 2461–2468.

    PubMed  CAS  Google Scholar 

  109. Undem BJ, Raible DG, Adkinson NF, Adams GK. Effect of removal of epithelium on antigen-induced smooth muscle contraction and mediator release from guinea-pig isolated trachea. J Pharmacol Exp Ther 1988; 244: 659–665.

    PubMed  CAS  Google Scholar 

  110. Lozewicz S, Wells C, Gomez E, Ferguson H, Richman P, Devalia J et al. Morphological integrity of the bronchial epithelium in mild asthma. Thorax 1990; 45: 12–15.

    PubMed  CAS  Google Scholar 

  111. Power C, Sreenan S, Hurson B, Burke C, Poulter LW. Distribution of immunocompetent cells in the bronchial wall of clinically healthy subjects showing bronchial hyperresponsiveness. Thorax 1993; 48: 1125–1129.

    PubMed  CAS  Google Scholar 

  112. Szentivanyi A. The beta-adrenergic theory of atopic abnormality in bronchial asthma. J Allergy 1968; 42: 203–232.

    Google Scholar 

  113. Barnes PJ, Dollery CT, MacDermot J. Increased pulmonary alpha-adrenergic and beta receptors in experimental asthma. Nature 1980; 285: 569–571.

    PubMed  CAS  Google Scholar 

  114. Taki F, Takagi K, Satake T, Sugiyama S, Ozawa T. The role of phospholipase in reduced beta-adrenergic responsiveness in experimental asthma. Am Rev Respir Dis 1986; 133: 362–366.

    PubMed  CAS  Google Scholar 

  115. Souhrada JF. Changes of airway smooth muscle in experimental asthma. Respir Physiol 1978; 32: 79–90.

    PubMed  CAS  Google Scholar 

  116. Santing RE, Schraa EO, Vos BG, Gores RJ, Olymulder CG, Meurs H et al. Dissociation between bronchial hyperreactivity in vivo and reduced-adrenoceptor sensitivity in vitro in allergen-challenged guinea-pigs. Eur J Pharmacol 1994; 257: 145–152.

    PubMed  CAS  Google Scholar 

  117. Hoshiko K, Morley J. Exacerbation of airway hyperreactivity by (+) salbutamol is sensitized guinea-pigs. Jpn J Pharmacol 1993; 63: 159–163.

    PubMed  CAS  Google Scholar 

  118. Morley J. Adverse reactions to sympathomimetics in laboratory animals. In: Costello JF, Mann RD, editors. Beta agonists in the treatment of asthma. Camforth: Parthenon, 1992: 57–68.

    Google Scholar 

  119. Frigas E, Loegering DA, Gleich GJ. Cytotoxic effects of the guinea-pig eosinophil major basic protein on tracheal epithelium. Lab Invest 1980; 42: 35–43.

    PubMed  CAS  Google Scholar 

  120. Motojima S, Frigas E, Loegering DA, Gleich GJ. Toxicity of eosinophil cationic proteins for guinea-pig tracheal epithelium in vitro. Am Rev Respir Dis 1989; 139: 801–805.

    PubMed  CAS  Google Scholar 

  121. Gleich GS, Flavahan NA, Fujisawa T, Vanhoutte PM. The eosinophil as a mediator of damage to respiratory epithelium: a model for bronchial hyperreactivity. J Allergy Clin Immunol 1988; 81: 776–781.

    PubMed  CAS  Google Scholar 

  122. Hunt TC, Summers JA, Campos MG, Rimmer SJ, Sturton G, Paltai S et al. Monoclonal antibodies specific for guinea-pig eosinophil MBP: their use in an ELISA, immunocytochemistry and flow cytometry. Clin Exp Allergy 1993; 23: 425–434.

    PubMed  CAS  Google Scholar 

  123. Flavahan NA. Slifman NR, Gleich GJ, Vanhoutte PM. Human major basic protein causes hyperreactivity of respiratory smooth muscle. Role of epithelium. Am Rev Respir Dis 1988; 138: 685–688.

    PubMed  CAS  Google Scholar 

  124. Fennessy MR, Stewart AG, Thompson DC. Aerosolized and intravenously administered leukotrienes: effects on the bronchoconstrictor potency of histamine in the guinea- pig. Br J Pharmacol 1986; 87: 741–749.

    PubMed  CAS  Google Scholar 

  125. Ikuta N, Sugiyama, S, Takagi K, Satake T, Ozawa, T. Implication of oxygen radicals on airway hyperresponsiveness after ovalbumin challenge in guinea-pigs. Am Rev Respir Dis 1992; 145: 561–565.

    PubMed  CAS  Google Scholar 

  126. Basten A, Beeson PB. Mechanism of eosinophilia. II. Role of the lymphocyte. J Exp Med 1970; 131: 1288–1305.

    CAS  Google Scholar 

  127. Anderson GP, Coyle AJ. TH2 and TH2-like cells in allergy and asthma: pharmacological perspectives. TIPS 1994; 15: 324–332.

    PubMed  CAS  Google Scholar 

  128. Corrigan C, Hartneil A, Kay A. T-lymphocyte activation in acute severe asthma. Lancet I, 1988; 1129–1132.

    Google Scholar 

  129. Corrigan CJ, Haczku A, Gemou-Engesaeth V, Doi S, Kikuchi Y, Takatsu K et al. CD4 T-lymphocyte activation in asthma is accompanied by increased serum concentrations of interleukin-5. Effect of glucocorticoid therapy. Am Rev Respir Dis 1993; 147: 540–547.

    PubMed  CAS  Google Scholar 

  130. Sanderson CJ. Control of eosinophil production. In: Morley J, Colditz I, editors. Eosinophils in asthma. London: Academic Press, 1989: 29–41.

    Google Scholar 

  131. Mosmann TR, Coffman RL. TH-1 and TH-2 cells: different patterns of lymphokine secretion lead to different functional properties. Ann Rev Immunol 1989; 7: 145–173.

    CAS  Google Scholar 

  132. Gulbenkian AR, Egan RW, Fernandez X, Jones H, Kreutner W, Kung T et al. Interleukin-5 modulates eosinophil accumulation in allergic guinea-pig lung. Am Rev Respir Dis 1992; 146: 263–265.

    PubMed  CAS  Google Scholar 

  133. Milne AAY, Piper PJ. Effects of interleukin-5 inhibition on antigen-induced airway hyperresponsiveness and cell accumulation in guinea-pigs. Annals New York Academy of Sciences 1994; 725: 282–287.

    CAS  Google Scholar 

  134. Mauser PJ, Pitman A, Witt A, Fernandez X, Zurcher J, Kung T et al. Inhibitory effect of the TRFK-5 anti-IL-5 antibody in a guinea-pig model of asthma. Am Rev Respir Dis 1993; 148: 1623–1627.

    PubMed  CAS  Google Scholar 

  135. Van Oosterhoute AJM, Van Ark I, Hofman G, Savelkoul HFJ, Nijkamp FP. Recombinant interleukin-5 induces in vivo airway hyperresponsiveness to histamine in guinea-pigs. Eur J Pharmacol 1993; 236: 379–383.

    Google Scholar 

  136. Iwama T, Nagai H, Tsuruoka N, Koda A. Effect of murine recombinant interleukin-5 on bronchial reactivity in guinea-pigs, clin Exp Allergy 1993; 23: 32–38.

    PubMed  CAS  Google Scholar 

  137. Iwama T, Nagai H, Suda H, Tsuruoka N, Koda A. Effect of murine recombinant interleukin-5 on the cell population in guinea-pig airways. Br J Pharmacol 1992; 105: 1–22.

    Google Scholar 

  138. Kings MA, Chapman ID, Kristersson A, Sanjar S, Morley J. Human recombinant lymphokines and cytokines induce pulmonary eosinophilia in the guinea pig which is inhibited by ketotifen and AH 21–132. Int Arch Allergy Appl Immunol 1990; 297: 354–361.

    Google Scholar 

  139. Hellewell PG. Cell adhesion molecules and potential for pharmacological intervention in lung inflammation. Pulm Pharmacol 1993; 6: 109–118.

    PubMed  CAS  Google Scholar 

  140. Milne AAY, Piper PJ. The role of the VLA-4 intergrin in a model of airway inflammation in the guinea-pig. Br J Pharmacol 1994; 112: 82P.

    Google Scholar 

  141. Pretolani B, Ruffiie C, Lapa e Silva J-R, Joseph D, Lobb RR, Vargaftig BB. Antibody to very late activation antigen 4 prevents antigen-induced bronchial hyperreactivity and cellular infiltration in the guinea pig airways. J Exp Med 1994; 180: 795–805.

    PubMed  CAS  Google Scholar 

  142. Hansel TT, Walker C. The migration of eosinophils into the sputum of asthmatics: the role of adhesion molecules. Clin Exp Allergy 1992; 22: 345–356.

    PubMed  CAS  Google Scholar 

  143. Milne AAY, Piper PJ. The effects of two anti-CD 18 antibodies on antigen-induced airway hyperresponsiveness and leukocyte accumulation in the guinea-pig. Am J Respir Cell Mol Biol 1994; 11: 337–343.

    PubMed  CAS  Google Scholar 

  144. Lellouch-Tubiana A, Lefort J, Pirotzky E, Vargaftig BB, Pfister A. Ultrastructural evidence for extravascular platelet recruitment in the lung upon intravenous injection of platelet-activating factor (Paf-acether) to guinea pigs. Br J Exp Pathol 1985; 66: 345–355.

    PubMed  CAS  Google Scholar 

  145. Fryer AD, MacLagan J. Muscarinic inhibitory receptors in pulmonary parasympathetic nerves in the guinea-pig. Br J Pharmacol 1984; 83: 973–978.

    PubMed  CAS  Google Scholar 

  146. Minette PA, Barnes PJ. Prejunctional inhibitory muscarinic receptors on cholinergic nerves in human and guinea-pig airways. J Appl Physiol 1988; 64: 2532–2537.

    PubMed  CAS  Google Scholar 

  147. Ayala LE, Ahmed T. Is there loss of a protective muscarinic receptor mechanism in asthma? Chest 1989; 96: 1285–1291.

    PubMed  CAS  Google Scholar 

  148. McCaig DJ. Comparison of autonomic responses in the trachea isolated from normal and albumin-sensitive guinea-pigs. Br J Pharmacol 1987; 92: 809–816.

    PubMed  CAS  Google Scholar 

  149. Fryer AD, Wills-Karp M. Dysfunction of M2-muscarinic receptors in pulmonary parasympathetic nerves after antigen challenge. J Appl Physiol 1991; 71: 2255–2561.

    PubMed  CAS  Google Scholar 

  150. Santing RE, Pasman Y, Olymulder CG, Roffel AF, Meurs H, Zaagsma J. Contribution of a cholinergic reflex mechanism to allergen-induced bronchial hyperreactivity in permanently instrumented, unrestrained guinea-pigs. Br J Pharmacol 1995; 114: 414–418.

    PubMed  CAS  Google Scholar 

  151. Ten Berge REJ, Santing RE, Hamstra JJ, Roffel AF, Zaagsma J. Dysfunction of M2 receptors after the early allergic reaction: possible contribution to bronchial hyperresponsiveness in allergic guinea-pigs. Br J Pharmacol 1995; 114: 881–887.

    PubMed  Google Scholar 

  152. Undem BJ, Myers AC, Weinreich D. Antigen-induced modulation of autonomic and sensory neurons in vitro. Int Arch Allergy Appl Immunol 1991; 94: 319–324.

    PubMed  CAS  Google Scholar 

  153. Matsuse T, Thomson RJ, Chen XR, Salari H, Schellenberg RR. Capsaicin inhibits airway hyperresponsiveness but not lipoxygenase activity or eosinophilia after repeated aerosolized antigen in guinea pigs. Am Rev Respir Dis 1991; 144: 366–372.

    Google Scholar 

  154. Boichot E, Germain N, Lagente V, Advenier C. Prevention by the tachykinin NK2 receptor antagonist, SR 48968, of antigen-induced airway hyperresponsiveness in sensitized guinea-pigs. Br J Pharmacol 1995; 114: 259–261.

    PubMed  CAS  Google Scholar 

  155. Howell RE, Sickels BD, Woeppel SL. Pulmonary antiallergic and bronchodilator effects of isoenzyme-selective phosphodiesterase inhibitors in guinea-pigs. J Pharmacol Exp Ther 1993; 264: 609–615.

    PubMed  CAS  Google Scholar 

  156. Santing RE, Olymulder CG, Van der Molen K, Meurs H, Zaagsma J. Phosphodiesterase inhibitors reduce bronchial hyperreactivity and airway inflammation in unrestrained guinea-pigs. Eur J Pharmacol 1995; 275: 75–82.

    PubMed  CAS  Google Scholar 

  157. Morley J. K+ channel openers and suppression of airway hyperreactivity. Trends Pharmacol Sei 1994; 15: 463–468.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Milne, A.A.Y., Rossi, A.G., Chapman, I.D. (1996). PAF and Antigen-Induced Bronchial Hyperreactivity in Guinea Pigs. In: Raeburn, D., Giembycz, M.A. (eds) Airways Smooth Muscle: Modelling the Asthmatic Response In Vivo . Respiratory Pharmacology and Pharmacotherapy. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9000-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9000-7_3

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9863-8

  • Online ISBN: 978-3-0348-9000-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics