Skip to main content

Part of the book series: Respiratory Pharmacology and Pharmacotherapy ((RPP))

  • 45 Accesses

Abstract

The patency of the airway is regulated by airways smooth muscle which is under humoral and neural control, and also by other lung structures including the chest wall. Airway narrowing is an important defence mechanism against inhaled irritants and particles. An abnormal constriction of the bronchial tree, such as in asthma and chronic bronchitis, will result in a diminished capacity of the lungs to oxygenate the blood, which will eventually restrict physical activity and reduce the quality of life. Unfortunately, the prevalence, morbidity and mortality of these lung diseases continue to increase despite the introduction of new medicines and altered treatment guidelines. Consequently research into the regulation of airways smooth muscle in vitro and in vivo has attracted much interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Herxheimer H. Repeatable microshocks of constant strength in guinea pig anaphylaxis. J Physiol 1952; 117: 251–5.

    PubMed  CAS  Google Scholar 

  2. Dixon WE, Brodie TG. Contributions to the physiology of the lungs. Part 1. The bronchial muscles, their innervation, and the action of drugs upon them. J Physiol 1903; 29: 97–173.

    PubMed  CAS  Google Scholar 

  3. Konzett H, Rossler R. Versuchsanordnung zu Untersuchungen an der Bronchialmuskulatur. Arch Exp Path Pharmak 1940; 195: 71–4.

    Article  Google Scholar 

  4. Lees IV, Payne AN. Adaption and use of an ultrasonic nebuliser for inhalational studies in laboratory animals. Br J Pharmacol 1986; 87: 225 P.

    Google Scholar 

  5. Underwood SL, Lingham D, Pearson J, Raeburn D. A novel technique for the adminstration of bronchodilator drugs formulated as dry powders to the anaesthetised guinea-pig. J Pharmacol Methods 1991; 26: 203–10.

    Article  PubMed  CAS  Google Scholar 

  6. Raeburn D, Underwood SL, Villamil ME. Techniques for drug delivery to the airways and the assessment of lung function in animal models. J Pharmacological Toxicological Methods 1992; 27: 143–59.

    Article  CAS  Google Scholar 

  7. Cherniack RM, Farhi LE, Armstrong BW, Proctor DF. A comparison of esophageal and intrapleural pressure in man. J Appl Physiol 1956; 8: 203–11.

    Google Scholar 

  8. Crosfill ML, Widdicomb JG. Physical characteristics of the chest and lungs and the work of breathing in different mammalian species. J Physiol 1961; 158: 1–14.

    PubMed  CAS  Google Scholar 

  9. Davidson JT, Wasserman K, Lillington GA, Schmidt RW. Pulmonary function testing in the rabbit. J Appl Physiol 1966; 21: 1094–8.

    PubMed  CAS  Google Scholar 

  10. Mead J. Mechanical properties of lungs. Physiol Rev 1961; 41: 281–330.

    CAS  Google Scholar 

  11. O’Neill JJ, Raub JA. Pulmonary function testing in small laboratory animals. Environ Health Perspectives 1984; 56: 11–12.

    Article  Google Scholar 

  12. Kokka N, Elliot HW, Way EL. Some effects of morphine on respiration and metabolism of rats. J Pharmacol Exp Ther 1965; 148: 386–92.

    PubMed  CAS  Google Scholar 

  13. Nelson RB, Elliot HW. A comparison of some central effects of morphine, morphinone and thebaine on rats and mice. J Pharmacol Exp Ther 1967; 155: 516–20.

    PubMed  CAS  Google Scholar 

  14. Oktay S, Onur R, Ilhan M, Turker RK. Potentiation of the morphine-induced respiratory rate depression by Captopril. Eur J Pharmacol 1981; 10: 257–62.

    Article  Google Scholar 

  15. Amdur MO, Mead J. Mechanics of respiration in unanaesthetized guinea pigs. Am J Physiol 1958; 192: 364–8.

    PubMed  CAS  Google Scholar 

  16. Palacek F. Measurement of ventilatory mechanics in the rat. J Appl Physiol 1969; 27: 149–56.

    Google Scholar 

  17. Amdur MO. The respiratory response of guinea pigs to histamine aerosol. Arch Environ Health 1966; 13: 29–37.

    PubMed  CAS  Google Scholar 

  18. Douglas JS, Dennis MW, Ridgeway P, Bouhays A. Airway dilation and constriction in spontaneously breathing guinea-pigs. J Pharmacol Exp Ther 1972; 180: 98–109.

    PubMed  CAS  Google Scholar 

  19. Popa V, Douglas JS, Bouhuys A. Airway responses to histamine, acetylcholine and antigen is sensitised guinea pigs. J Lab Clin Med 1974; 84: 225–34.

    PubMed  CAS  Google Scholar 

  20. Johanson WG, Pierce AK. A noninvasive technique for measurement of airway conduc-tance in small animals. J Appl Physiol 1971; 30: 146–50.

    PubMed  Google Scholar 

  21. Pennock BE, Cox CP, Rodgers RM, Cain WA, Wells JH. A noninvasive technique for measurement of changes in specific airway resistance. J Appl Physiol 1979; 46: 399–406.

    PubMed  CAS  Google Scholar 

  22. Agrawal KP. Specific airway conductance in guinea pigs: Normal values and histamine induced fall. Respir Physiol 1981; 43: 23–30.

    Article  PubMed  CAS  Google Scholar 

  23. Agrawal KP, Kumar A. Fall in specific airway conductance at residual volume in small airway obstruction. Respir Physiol 1980; 40: 65–78.

    Article  PubMed  CAS  Google Scholar 

  24. Griffiths-Johnson DA, Nicholls PJ, McDermott M. Measurement of specific airway conductance in guinea pigs. J. Pharmacol Methods 1988; 19: 233–42.

    Article  PubMed  CAS  Google Scholar 

  25. Dennis MW, Douglas JS, Casby JU, Stolwijk JAJ, Bouhuys A. Online analogue computer for dynamic lung compliance and pulmonary resistance. J Appl Physiol 1969; 26: 248–52.

    PubMed  CAS  Google Scholar 

  26. Mead J. Control of respiratory frequency. J Appl Physiol 1960; 15: 325–36.

    Google Scholar 

  27. Murphy SD, Ulrich CE. Multi-animal test system for measuring effects of irritant gases and vapors on respiratory function of guinea pigs. Amer Ind Hyg Assoc J 1964; 25: 28–36.

    CAS  Google Scholar 

  28. Jackson AC, Watson JW. Oscillatory mechanics of the respiratory system in normal rats. Respir Physiol 1982; 48: 309–22.

    Article  PubMed  CAS  Google Scholar 

  29. Hiett DM. Tests of ventilatory function for use in long term animal studies. Br J Ind Med 1974; 31: 53–8.

    PubMed  CAS  Google Scholar 

  30. Zin WA, Pengelly LD, Milic-Emily J. Single-breath method for measurement of respiratory mechanics in anesthetized animals. J Appl Physiol 1982; 52: 1266–71.

    PubMed  CAS  Google Scholar 

  31. Lorino AM, Benichou M, Kochi T, Lorino H, Milic-Emili J, Harf A. Comparison of the constant flow and occlusion methods for assessment of bronchoconstriction in guinea pigs. Eur Respir J 1989; 2: 84–9.

    PubMed  CAS  Google Scholar 

  32. Hutson PA, Church MK, Clay TP, Miller P, Holgate ST. Early and late phase bronchoconstriction after allergen challenge of nonanaesthetised guinea pigs. Am Rev Resp Dis 1988; 137: 548–57.

    PubMed  CAS  Google Scholar 

  33. Stamm AM, Clausen JL, Tisi GM. Effect of aerosolized isoproterenol on resting myogenic tone in normals. J Appl Physiol 1976; 40: 525–35.

    PubMed  CAS  Google Scholar 

  34. Bouhuys A, van de Woestijne KP. Mechanical consequences of airway smooth muscle relaxation. J Appl Physiol 1971; 30: 670–6.

    PubMed  CAS  Google Scholar 

  35. Lonky SA, Tisi GM. Determining changes in airway caliber in asthma: the role of submaximal expiratory flow rates. Chest 1980; 77: 741–8.

    Article  PubMed  CAS  Google Scholar 

  36. McFadden ER, Newton-Howes J, Pride NB. Acute effect of inhaled isoproterenol on the mechanical characteristics of the lungs in normal man. J Clin Invest 1970; 49: 779–90.

    Article  PubMed  CAS  Google Scholar 

  37. Ayres SM, Griesbach SJ, Reimold F, Evans RG. Bronchial component in chronic obstructive lung disease. Am J Med 1974; 57: 183–91.

    Article  PubMed  CAS  Google Scholar 

  38. Colebatch HJH. The humoral regulation of alveolar ducts. In: Bouhuys A, editor. Airway dynamics, physiology and pharmacology. Springfield: Charles C Thomas, 1970; 169–183.

    Google Scholar 

  39. Laitinen LA, Empey DW, Poppius H. Lernen RJ, Gold WM, Nadel JA. Effects of intravenous histamine on static lung compliance and airway resistance in normal man. Am Rev Respir Dis 1976; 114: 291–5.

    PubMed  CAS  Google Scholar 

  40. McKenzie DK, Gandevia SC. Strength and endurance of inspiratory, expiratory and limb muscles in asthma. Am Rev Respir Dis 1986; 134: 999–1004.

    PubMed  CAS  Google Scholar 

  41. Lavietes MH, Grocela JA, Maniatis T, Potulski F, Ritter AB, Sunderam G. Inspiratory muscle strength in asthma. Chest 1988; 93: 1043–8.

    Article  PubMed  CAS  Google Scholar 

  42. Reid L. Visceral Cartilage. J. Anat 1976; 122: 349–55.

    CAS  Google Scholar 

  43. Raeburn D, Goodman R. Influence of Cartilage on Airways Smooth Muscle Contractility. In: Raeburn D, Giembycz MA, editors. Airways Smooth Muscle: Development and Regulation of Contractility. Basel: Birkhaüser, 1994: 291–305.

    Google Scholar 

  44. Raeburn D, Rodgers IW, Hay DWP, Fedan JS. The dependence of airways smooth muscle on extracellular Ca2+ for contraction is influenced by the presence of cartilage. Life Sei 1986; 38: 1499–505.

    Article  CAS  Google Scholar 

  45. Raeburn D, Rodgers IW, Hay DWP, Fedan JS. Influence of cartilage on reactivity and on the effectiveness of verapamil in guinea pig isolated airways smooth muscle. J Pharmacol Exp Ther 1987; 242: 450–4.

    PubMed  CAS  Google Scholar 

  46. Gupta P, Markham A, Morgan RM. Ca2+ ion sequestration by guinea pig tracheal cartilage: its influence on tracheal reactivity to KCl. Br J Pharmacol 1991; 104: 123–7.

    PubMed  CAS  Google Scholar 

  47. Jiang HE, Stephens NL. Contractile properties of bronchial smooth muscle with and without cartilage. J Appl Physiol 1990; 69: 120–6.

    PubMed  CAS  Google Scholar 

  48. Goodman FR, Weiss GB, Sturm B. Comparison of 45Ca binding and mobilization in cartilage and smooth muscle of guinea pig trachea. Fed Proc 1986; 45: 324.

    Google Scholar 

  49. Goodman FR, Weiss GB, Karaki H, Nakagawa H. Differential calcium movements induced by agonists in guinea pig tracheal muscle. Eur J Pharmacol 1987; 133: 111–7.

    Article  PubMed  CAS  Google Scholar 

  50. Moreno RH, Paré PD. Intravenous papain-induced cartilage softening decreases preload of tracheal smooth muscle. J Appl Physiol 1989; 66: 1694–98.

    PubMed  CAS  Google Scholar 

  51. Moreno RH, Hogg JC, Paré PD. Mechanics of airway narrowing. Am Rev Respir Dis 1986; 133: 1171–80.

    PubMed  CAS  Google Scholar 

  52. Baier H, Long WM, Wanner A. Bronchial circulation in asthma. Respiration 1985; 48: 199–205.

    Article  PubMed  CAS  Google Scholar 

  53. Pietra GG, Magno M. Pharmacological factors influencing permeability of the bronchial microcirculation. Fed Proc 1978; 37: 2466–70.

    PubMed  CAS  Google Scholar 

  54. Laitinen A, Laitinen LA, Moss R, Widdicombe JG. Organisation and structure of the tracheal and bronchial blood vessels in the dog. J Anat 1989; 165: 133–40.

    PubMed  CAS  Google Scholar 

  55. Pietra GG, Szidon JP, Leventhal MM, Fisherman AP. Histamine and interstitial pulmonary edema in the dog. Circ Res 1971; 29: 323–37.

    PubMed  CAS  Google Scholar 

  56. Laitinen A, Laitinen LA. Vascular beds in the airways of normal subjects and asthmatics. Eur Respir J 1990; 3(12): 658s–62s.

    Google Scholar 

  57. McDonald DM. The ultrastructure and permeability of tracheobronchial blood vessels in health and disease. Eur Respir J 1990; 3(12): 572s–85s.

    Google Scholar 

  58. Hill P, Goulding D, Webber SE, Widdicombe JG. Blood sinuses in the submucosa of the large airways of the sheep. J Anat 1989; 162: 235–47.

    PubMed  CAS  Google Scholar 

  59. Mariassy AT, Gazeroglu H, Wanner A. Morphometry of the subepithelial circulation in sheep airways. Am Rev Respir Dis 1991; 143: 162–6.

    PubMed  CAS  Google Scholar 

  60. Laitinen LA, Robinson NP, Laitinen A, Widdicombe JG. Relationship between tracheal mucosal thickness and vascular resistance in dogs. J Appl Physiol 1986; 61: 2816–93.

    Google Scholar 

  61. Corfield DR, Hanaff Z, Webber SE, Widdicombe JG. Changes in tracheal mucosal thickness and blood flow in sheep. J Appl Physiol 1991; 71: 1282–8.

    PubMed  CAS  Google Scholar 

  62. Csete ME, Abraham WM, Wanner A. Vasomotion influences airflow in peripheral airways. Am Rev Resp Dis 1990; 141: 1490–1513.

    Google Scholar 

  63. Kelly L, Kolbe J, Mitzner W, Spannhake EW, Bromberger BB, Menkes H. Bronchial blood flow affects recovery from constriction in dog lung periphery. J Appl Physiol 1986; 60: 1954–9.

    PubMed  CAS  Google Scholar 

  64. Thornton DJ, Davies JR, Kraayenbrink M, Richardson PS, Sheehan JK, Carlstedt I. Mucus glycoproteins from ‘normal’ human tracheobronchial secretion. Biochem J 1990; 265: 79–186.

    Google Scholar 

  65. Bhaskar KR, O’Sullivan DD, Seltzer A, Rössing TH, Drazen TM, Reid L. Density gradient study of bronchial mucus aspirates from healthy volunteers (smokers and non-smokers) and from patients with tracheostomy. Exp Lung Res 1985; 9: 289–308.

    Article  PubMed  CAS  Google Scholar 

  66. Bhaskar KR, O’Sullivan DD, Opaskar-Hincman H, Reid LM, Coles SJ. Density gradient analysis of secretions produced in vitro by humans and canine airway mucosa: identification of lipids and proteoglycans in such secretions. Exp Lung Res 1985; 10: 401–22.

    Article  Google Scholar 

  67. Rogers DF. Influence of Respiratory Tract Fluid on Airway Calibre. In: Raeburn D, Giembycz MA, editors. Airways Smooth Muscle: Development and Regulation of Contractility. Basel: Birkhaiiser, 1994: 291–305.

    Google Scholar 

  68. Kapanci Y, Assimacopoulos A, Irle C, Zwahlen A, Gabbiani G. Contractile interstitial cells in pulmonary alveolar septa: A possible regulator of ventilation/perfusion ratio. J Cell Biol 1974; 60: 375–92.

    Article  PubMed  CAS  Google Scholar 

  69. Miller WS. The musculature of the finer divisions of the bronchial tree and its relation to certain pathological conditions. Am Rev Tuberc Pulm Dis 1921; 5: 689–704.

    Google Scholar 

  70. Larsell O, Dow RS. The innervation of the human lung. Am J Anat 1933; 52: 125–46.

    Article  Google Scholar 

  71. Gaylor JB. The intrinsic nervous mechanism of the human lung. 1934; 57: 143–60.

    Google Scholar 

  72. Nadel JK, Cabezas GA, Austin JHM. In vivo roentgenographic examination of parasympathetic innervation of small airways. Use of powdered tantalum and a fine focal spot X-ray tube. Invest Radiol 1971; 6: 9–17.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Webber, S., Karlsson, JA. (1996). Measurement of Airways Smooth Muscle Responsiveness in Animals. In: Raeburn, D., Giembycz, M.A. (eds) Airways Smooth Muscle: Modelling the Asthmatic Response In Vivo . Respiratory Pharmacology and Pharmacotherapy. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9000-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9000-7_1

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9863-8

  • Online ISBN: 978-3-0348-9000-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics