Skip to main content

Cellular mechanisms of cardiac arrhythmias in the ischemic and reperfused heart

  • Chapter

Part of the book series: EXS ((EXS,volume 76))

Abstract

Sudden cardiac death is one of the major causes of mortality in the Western world. Ischemia- induced arrhythmias, principally ventricular tachycardia and ventricular fibrillation, have been suggested as a possible explanation for this pathology. In addition, reperfusion of the ischemic myocardium may also, albeit more rarely, be responsible for the occurrence of ventricular arrhythmias and sudden cardiac death. The two main mechanisms responsible for the initiation and the maintenance of ventricular arrhythmias occurring during ischemia and reperfusion are reentry mechanisms and triggered activities (non-reentrant mechanisms). After a brief overview of the electrophysiological mechanisms, namely the reentrant and non-reentrant mechanisms, involved in the initiation and the maintenance of ischemia and reperfusion arrhythmias, the cellular mechanisms responsible for the genesis of ischemia and reperfusion arrhythmias will be reviewed. Only arrhythmias occurring during the early period of ischemia, a period during which reperfusion may induce a protection of the myocytes, will be reviewed in this chapter. The electrophysiological mechanisms of the arrhythmias occurring during later phases of ischemia and during infarction have been reviewed elsewhere [1] and their cellular mechanisms are still not clearly identified.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wit AL, Janse MJ. The ventricular arrhythmias if ischemia and infarction: Electrophysiological mechanisms. Mount Kisko, New York: Futura Publishing Company Inc, 1993.

    Google Scholar 

  2. Kaplinsky E, Ogawa S, Balke CW, Dreifus LS. Two periods of early ventricular arrhythmia in the canine acute myocardial infarction model. Circulation 1979; 60: 397 – 403.

    PubMed  CAS  Google Scholar 

  3. Janse MJ, Van Capelle FJL, Morsink H, Kleber AG, Wilms-Schopman F, Cardinal R, Naumann d’Alnoncourt C, Durrer D. Flow of “injury” current and patterns of excitation during early ventricular arrhythmias in acute regional myocardial ischemia in isolated porcine and canine hearts. Evidence for two different arrhythmogenic mechanisms. Circ Res 1980; 47: 151 – 165.

    PubMed  CAS  Google Scholar 

  4. Pogwizd SM, Corr PB. Reentrant and nonreentrant mechanisms contribute to arrhythmogenesis during early myocardial ischemia: results using three-dimensional mapping. Circ Res 1987; 61: 352 – 371.

    PubMed  CAS  Google Scholar 

  5. Pogwizd SM, Corr PB. Mechanisms underlying the development of ventricular fibrillation during early myocardial ischemia. Circ Res 1990; 66: 672 – 695.

    PubMed  CAS  Google Scholar 

  6. Cranefield PF, Aronson RS. Cardiac arrhythmias: the role of triggered activity and other mechanisms. Mount Kisko, New York: Futura Publishing Company Inc, 1988.

    Google Scholar 

  7. Manning AS, Hearse DJ. Reperfusion-induced arrhythmias: mechanisms and prevention. J Mol Cell Cardiol 1984; 16: 497 – 518.

    Article  PubMed  CAS  Google Scholar 

  8. Bril A, Forest MC, Gout B. Ischemia and reperfusion-induced arrhythmias in rabbits with chronic heart failure. Am J Physiol 1991; 216: H301 - H307.

    Google Scholar 

  9. Pogwizd SM, Corr PB. Electrophysiologic mechanisms underlying arrhythmias due to reperfusion of ischemic myocardium. Circulation 1987; 76: 404 – 426.

    Article  PubMed  CAS  Google Scholar 

  10. Priori SG, Mantica M, Napolitano C, Schwartz PJ. Early afterdepolarizations induced in vivo by reperfusion of ischemic myocardium. A possible mechanism for reperfusion arrhythmias. Circulation 1990; 81: 1911 – 1920.

    Article  PubMed  CAS  Google Scholar 

  11. Coronel R, Wilms-Schopman F, Opthof T, Cinca J, Fiolet JWT, Janse MJ. Reperfusion arrhythmias in isolated perfused pig hearts. Inhomogeneities in extracellular potassium, ST and TQ potentials, and transmembrane action potentials. Circ Res 1992; 71: 1131 – 1142.

    PubMed  CAS  Google Scholar 

  12. Kaplinsky E, Ogawa S, Michelson EL, Dreifus LS. Instantaneous and delayed ventricular arrhythmias after reperfusion of acutely ischemic myocardium: evidence for multiple mechanisms. Circulation 1981; 63: 333 – 340.

    Article  PubMed  CAS  Google Scholar 

  13. Forest MC, Cheval B, Bril A. Effects of dofetilide and glibenclamide on shortening of action potential and reduction of contractile force in guinea-pig ischemic papillary muscle. J Mol Cell Cardiol 1992; 24(suppl 6): S40(Abstract).

    Google Scholar 

  14. Nakaya H, Takeda Y, Tohse N, Kanno M. Effects of ATP-sensitive K+ channel blocker on the action potential shortening in hypoxic and ischemic myocardium. Brit J Pharmacol 1991; 103: 1019 – 1026.

    CAS  Google Scholar 

  15. Pasnani JS, Ferrier GR. Differential effects of glyburide on premature beats and ventricular tachycardia in an isolated tissue model of ischemia and reperfusion. J Pharmacol Exp Ther 1992; 262: 1076 – 1084.

    PubMed  CAS  Google Scholar 

  16. Nichols CG, Lederer WJ. Adenosine triphosphate-sensitive potassium channels in the cardiovascular system. Am J Physiol 1991; 261: H1675 – H1686.

    PubMed  CAS  Google Scholar 

  17. Bekheit S, Restivo M, Boutjdir M, Henkin R, Gooyandeh K, Assadi M, Khatib S, Gough WB, El-Sherif N. Effects of glyburide on ischemia-induced changes in extracellular potassium and local myocardial activation: a potential new approach to the management of ischemia-induced malignant ventricular arrhythmias. Am Heart J 1990; 119: 1025 – 1033.

    Article  PubMed  CAS  Google Scholar 

  18. Wolleben CD, Sanguinetti MC, Siegl PKS. Influence of ATP-sensitive potassium channel modulators on ischemia-induced fibrillation in isolated rat hearts. J Mol Cell Cardiol 1989; 21: 783 – 788.

    Article  PubMed  CAS  Google Scholar 

  19. Kantor PF, Coetzee WA, Carmeliet EE, Dennis SC, Opie LH. Reduction of ischemic K+ Loss and arrhythmias in rat hearts. Effect of glibenclamide, a sulfonylurea. Circ Res 1990; 66: 478 – 485.

    PubMed  CAS  Google Scholar 

  20. Gout B, Nichols AJ, Feuerstein GZ, Bril A. Antifibrillatory effects of BRL-32872 in anesthetised Yucatan minipigs with regional ischemia. J Cardiovasc Pharmacol 1995; 26: 636 – 644.

    Article  PubMed  CAS  Google Scholar 

  21. Escande D, Mestre M, Cavero I, Brugada J, Kirchhof C. RP 58866 and its active enantiomer RP 62719 (Terikalant): blockers of the inward rectifier K+ current acting as pure class III antiarrhythmic agents. J Cardiovasc Pharmacol 1992; 20: S106 – S113.

    Article  PubMed  CAS  Google Scholar 

  22. Zuanetti G, Corr PB, Antiarrhythmic efficacy of a new class III agent, UK-68,798, during chronic myocardial infarction: evaluation using three-dimensional mapping. J Pharmacol Exp Ther 1991; 256: 325 – 334.

    PubMed  CAS  Google Scholar 

  23. Bril A, Laville MP, Gout B. Effect of glibenclamide on ventricular arrhythmias and cardiac function in ischaemia and reperfusion in isolated rat heart. Cardiovasc Res 1992; 26: 1069 – 1076.

    Article  PubMed  CAS  Google Scholar 

  24. Kaumann AJ, Aramendia P. Prevention of ventricular fibrillation induced by coronary ligation. J Pharmacol Exp Ther 1968; 164: 326 – 332.

    PubMed  CAS  Google Scholar 

  25. Billman GE. Effect of calcium channel antagonists on susceptibility to sudden cardiac death: protection from ventricular fibrillation. J Pharmacol Exp Ther 1989; 248: 1334 – 1342.

    PubMed  CAS  Google Scholar 

  26. Curtis MJ, MacLeod BA, Walker MJA. Antiarrhythmic actions of verapamil against ischaemic arrhythmias in the rat. Brit J Pharmacol 1984; 83: 373 – 385.

    CAS  Google Scholar 

  27. Bril A, Rochette L. Prevention of reperfusion-induced ventricular arrhythmias in isolated rat heart with magnesium. Can J Physiol Pharmacol 1990; 68: 694 – 699.

    Article  PubMed  CAS  Google Scholar 

  28. Opie LH, Coetzee WA, Dennis SC, Thandroyen FT. A potential role of calcium ions in early ischemic and reperfusion arrhythmias. Ann New York Acad Sci 1988; 522: 464 – 477.

    Article  CAS  Google Scholar 

  29. Thandroyen FT, McCarthy J, Burton KP, Opie LH. Ryanodine and caffeine prevent ventricular arrhythmias during acute myocardial ischemia and reperfusion in rat heat. Circ Res 1988; 62: 306 – 314.

    PubMed  CAS  Google Scholar 

  30. Du Toit EF, Opie LH. Antiarrhythmic properties of specific inhibitors of sarcoplasmic reticulum calcium ATPase in the isolated rat heart after coronary artery ligation. J Am Coll Cardiol 1994; 23: 1505 – 1510.

    Article  PubMed  CAS  Google Scholar 

  31. Ferrier GR, Moffat MP, Lukas A. Possible mechanisms of ventricular arrhythmias elicited by ischemia followed by reperfusion. Studies on isolated canine ventricular tissues. Circ Res 1985; 56: 184 – 194.

    PubMed  CAS  Google Scholar 

  32. Coetzee WA, Opie LH. Effects of components of ischemia and metabolic inhibition on delayed afterdepolarizations in guinea pig papillary muscle. Circ Res 1987; 61: 157 – 165.

    PubMed  CAS  Google Scholar 

  33. Brooks WW, Conrad CH, Morgan JP. Reperfusion induced arrhythmias following ischaemia in intact rat heart: role of intracellar calcium. Cardiovasc Res 1995; 29: 536 – 542.

    PubMed  CAS  Google Scholar 

  34. Tani M, Neely JR. Role of intracellular Na+ in Ca2+ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts. Possible involvement of H+ -Na+ and Na+ -Ca2+ exchange. Circ Res 1989; 65: 1045 – 1056.

    PubMed  CAS  Google Scholar 

  35. Du Toit EF, Opie LH. Role for the Na+/H+ exchanger in reperfusion stunning in isolated perfused rat heart. J Cardiovasc Pharmacol 1993; 22: 877 – 883.

    Article  PubMed  CAS  Google Scholar 

  36. Opie LH, Coetzee WA. Role for calcium ions in reperfusion arrhythmias. Relevance to pharmacological intervention. Cardiovasc Drugs Ther 1988; 2: 623 – 636.

    Article  PubMed  CAS  Google Scholar 

  37. Pogwizd S, Corr P. Biochemical and electrophysological alterations underlying ventricular arrhythmias in the failing heart. Eur Heart J 1994; 15: 145 – 154.

    PubMed  Google Scholar 

  38. Avkiran M, Ibuki C. Reperfusion-induced arrhythmias. A role for washout of extracellular protons? Circ Res 1992; 71: 1429 – 1440.

    PubMed  CAS  Google Scholar 

  39. Dennis SC, Coetzee WA, Cragoe EJJ, Opie LH. Effects of proton buffering and of amiloride derivatives on reperfusion arrhythmias in isolated rat hearts. Possible evidence for an arrhythmogenic role of Na+-H+ exchange. Circ Res 1990; 66: 1156 – 1159.

    PubMed  CAS  Google Scholar 

  40. Nadeau RA, De Champlain J. Plasma catecholamines in acute myocardial infarction. Am Heart J 1979; 98: 548 – 554.

    Article  PubMed  CAS  Google Scholar 

  41. Dimassi N, Bril A, Autissier N, Bralet J, Rochette L. Relations between reperfusion arrhythmias and myocardial norepinephrine and accumulation of calcium in the rat. Cardioscience 1992; 3: 7 – 12.

    PubMed  CAS  Google Scholar 

  42. Corr PB, Shayman JA, Kramer JB, Kipnis RJ. Increased alpha-adrenergic receptors in ischemic cat myocardium. A potential mediator of electrophysiological derangements. J Clin Invest 1981; 67: 232 – 236.

    Article  Google Scholar 

  43. Maisel AS, Motulsky HJ, Insel PA. Externalization of beta-adrenergic receptors promoted by myocardial ischemia. Science 1985; 230: 183 – 186.

    Article  PubMed  CAS  Google Scholar 

  44. Bralet J, Didier JP, Moreau D, Opie LH. Rochette L. Effect of alpha-adrenoceptor antagonists (phentolamine, nicergoline and prazosin) on reperfusion arrhythmias and noradrenaline release in perfused rat heart. Br J Pharmacol 1985; 84: 9 – 18.

    PubMed  CAS  Google Scholar 

  45. Rochette L, Didier JP, Moreau D, Bralet J, Opie LH. Role of beta-adrenoceptor antagonism in the prevention of reperfusion ventricular arrhythmias: Effects of acebu-tolol, atenolol and D-propranolol on isolated working rat hearts subject to myocardial ischemia and reperfusion. Am Heart J 1984; 107: 1132 – 1141.

    Article  PubMed  CAS  Google Scholar 

  46. Priori SG, Corr PB. Mechanisms underlying early and delayed afterdepolarization induced by catecholamines in isolated adult ventricular myocytes. Am J Physiol 1990; 258: H1796 – H1805.

    PubMed  CAS  Google Scholar 

  47. Priori SG, Yamada KA, Corr PB. Influence of hypoxia on adrenergic modulation of triggered activity in isolated adult canine myocytes. Circulation 1991; 83: 248 – 259.

    PubMed  CAS  Google Scholar 

  48. Molina-Viamonte V, Anyukhovsky EP, Rosen MR. An a, adrenergic receptor subtype is responsible for delayed afterdepolarizations and triggered activity during simulated ischemia and reperfusion of isolated canine Purkinje fibers. Circulation 1991; 84: 1732 – 1740.

    PubMed  CAS  Google Scholar 

  49. Lee JH, Rosen MR. Modulation of delayed afterdepolarisations by alpha, adrenergic receptor subtypes. Cardiovasc Res 1993; 27: 839 – 844.

    Article  PubMed  Google Scholar 

  50. Sheridan DJ, Penkoske PA, Sobel BE, Corr PB. Alpha adrenergic contributions to dysrhythmia during myocardial ischemia and reperfusion in cats. J Clin Invest 1980; 65: 161 – 171.

    Article  PubMed  CAS  Google Scholar 

  51. Puddu PE, Jouve R, Langlet F, Guillen JC, Lanti M, Reale A. Prevention of postischemic ventricular fibrillation late after right or left stellate ganglionectomy in dogs. Circulation 1988; 77: 935 – 946.

    Article  PubMed  CAS  Google Scholar 

  52. Bril A, Tomasi V, Laville MP. Antiarrhythmic effect of Carvedilol in rat isolated heart subjected to regional ischemia and reperfusion. Pharmacol Commun 1995; 5: 291 – 300.

    CAS  Google Scholar 

  53. Manning AS, Coltart DJ, Hearse DJ. Ischemia and reperfusion-induced arrhythmias in the rat. Effects of xanthine oxidase inhibition with allopurinol. Circ Res 1984; 55: 545 – 548.

    PubMed  CAS  Google Scholar 

  54. Woodward B, Zakaria MN. Effect of some free radical scavengerss on reperfusion induced arrhythmias in the isolated rat heart. J Mol Cell Cardiol 1985; 17: 485 – 493.

    Article  PubMed  CAS  Google Scholar 

  55. Bernier M, Hearse DJ, Manning AS. Reperfusion-induced arrhythmias and oxygen-derived free radicals. Studies with “anti-free radical” interventions and a free radical-generating system in the isolated perfused rat heart. Circ Res 1986; 58: 331 – 340.

    PubMed  CAS  Google Scholar 

  56. Abadie C, Ben Baouali A, Maupoil V, Rochette L. An alphatocopheral analogue with antioxidant activity improves myocardial function during ischemia reperfusion in isolated working rat hearts. Free Radical Biol Med 1993; 15: 209 – 215.

    Article  CAS  Google Scholar 

  57. Hearse DJ, Kusama Y, Bernier M. Rapid electrophysiological changes leading to arrhythmias in the aerobic rat heart. Photosensitization studies with rose bengal-derived reactive oxygen intermediates. Circ Res 1989; 65: 146–153: 27

    Google Scholar 

  58. Kusama Y, Bernier M, Hearse DJ. Exacerbation of reperfusion arrhythmias by sudden oxidant stress. Circ Res 1990; 67: 481 – 489.

    PubMed  CAS  Google Scholar 

  59. Yamada M, Hearse DJ, Curtis MJ. Reperfusion and readmission of oxygen: pathophysiological relevance of oxygen derived free radicals to arrhythmogenesis. Circ Res 1990; 67: 1 – 14.

    Google Scholar 

  60. Shattock MJ, Hearse DJ, Matsumura H. Ionic currents underlying oxidant stress-induced arrhythmias. In: J Vereecke, PP Van Bogaert and F Verdonck, editors: Ionic currents and ischemia, Leuven: University Press, 1990: 165 – 189.

    Google Scholar 

  61. Coetzee WA, Owen P, Dennis SC, Saman S, Opie LH. Reperfusion damage: free radicals mediate delayed membrane changes rather than early ventricular arrhythmias. Cardiovasc Res 1990; 24: 156 – 164.

    Article  PubMed  CAS  Google Scholar 

  62. Zweier JL, Flaherty JT, Weisfeld ML. Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci USA 1987; 84: 1404 – 1407.

    Article  PubMed  CAS  Google Scholar 

  63. Maupoil V, Rochette L. Evaluation of free radical and lipid peroxide formation during global ischemia and reperfusion in isolated perfused rat heart. Cardiovasc Drugs Ther 1988; 2: 615 – 621.

    Article  PubMed  CAS  Google Scholar 

  64. Bril A, Rochette L, Verry A, Maupoil V, Man RYK, Opie LH. Effects of the free radical generating system FeCl3/ADP on reperfusion arrhythmias of rat hearts and electrical activity of canine Purkinje fibres. Cardiovasc Res 1990; 24: 669 – 675.

    Article  PubMed  CAS  Google Scholar 

  65. Snyder DW, Crafford WAJ, Glashow JL, Rankin D, Sobel BE, Corr PB. Lysophosphoglycerides in ischemic myocardium effluents and potentiation of their arrhythmogenic effects. Am J Physiol 1981; 241: H700 – 707.

    PubMed  CAS  Google Scholar 

  66. Akita H, Creer MH, Yamada KA, Sobel BE, Corr PB. Electrophysiologic effects of intracellular lysophosphoglycerides and their accumulation in cardiac lymph with myocardial ischemia in dogs. J Clin Invest 1986; 78: 271 – 280.

    Article  PubMed  CAS  Google Scholar 

  67. Sedlis SP, Sequeira JM, Altszuler HM. Coronary sinus lysophosphatidylcholine accumulation during rapid atrial pacing. Am J Cardiol 1990; 66: 695 – 698.

    Article  Google Scholar 

  68. Arnsdorf MF, Sawicki GJ. The effects of lysophosphatidylcholine, a toxic metabolite of ischemia, on the components of cardiac excitability in sheep Purkinje fibers. Circ Res 1981; 49: 16 – 30.

    PubMed  CAS  Google Scholar 

  69. Corr PB, Yamada KA, Creer MH, Wu J, McHowat J, Yan GX. Amphipathic lipid metabolites and arrhythmias during ischemia. In: Zipes DP, Jalife J, eds. Cardiac electrophysiology. From cell to bedside, Philadelphia, PA: WB Saunders Company, 1995: 182 – 203.

    Google Scholar 

  70. Corr PB, Snyder DW, Cain ME, Crafford WAJ, Gross RW, Sobel BE. Electrophysiological effects of amphiphiles on canine Purkinje fibers. Implications for dysrhythmia secondary to ischemia. Circ Res 1981; 49: 354 – 363.

    PubMed  CAS  Google Scholar 

  71. Pogwizd SM, Onufer JR, Kramer JB, Sobel BE, Corr PB. Induction of delayed afterdepolarizations and triggered activity in canine Purkinje fibers by lysophosphoglycerides. Circ Res 1986; 59: 416 – 426.

    PubMed  CAS  Google Scholar 

  72. Man RYK, Choy PC. Lysophosphatidylcholine causes cardiac arrhythmia. J Mol Cell Cardiol 1982; 14: 173 – 175.

    Article  PubMed  CAS  Google Scholar 

  73. Man RYK. Lysophosphatidylcholine-induced arrhythmias and its accumulation in the rat perfused heart. Br J Pharmacol 1988; 93: 412 – 416.

    PubMed  CAS  Google Scholar 

  74. Avkiran M, Curtis MJ. Independent dual perfusion of left and right coronary arteries in isolated rat hearts. Am J Physiol 1991; 261: H2082 – 2090.

    PubMed  CAS  Google Scholar 

  75. Yan GX, Park TH, Corr PB. Activation of thrombin receptor increases intracellular Na+ during myocardial ischemia. Am J Physiol 1995; 268: H1740 – 1748.

    PubMed  CAS  Google Scholar 

  76. McHowatt J, Yamada KA, Wu J, Yan GX, Corr PB. Recent insights pertaining to sarcolemmal phospholipid alterations underlying arrhythmogenesis in the ischemic heart. J Cardiovasc Electrophysiol 1993; 4: 288 – 310.

    Article  Google Scholar 

  77. Saffitz JE, Corr PB, Sobel BE. Arrhythmogenesis and ventricular dysfunction after myocardial infarction. Is anomalous cellular coupling the elusive link? Circulation 1993; 87: 1742 – 1745.

    PubMed  CAS  Google Scholar 

  78. Curtis MJ, Pugsley MK, Walker MJA. Endogenous chemical mediators of ventricular arrhythmias in ischaemic heart disease. Cardiovasc Res 1993; 27: 703 – 719.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Bril, A. (1996). Cellular mechanisms of cardiac arrhythmias in the ischemic and reperfused heart. In: Karmazyn, M. (eds) Myocardial Ischemia: Mechanisms, Reperfusion, Protection. EXS, vol 76. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8988-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8988-9_9

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9857-7

  • Online ISBN: 978-3-0348-8988-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics