Skip to main content

The roles of free radicals, peroxides and oxidized lipoproteins in second messenger system dysfunction

  • Chapter
Myocardial Ischemia: Mechanisms, Reperfusion, Protection

Part of the book series: EXS ((EXS,volume 76))

  • 1392 Accesses

Abstract

In living tissue, cells are constantly exposed to a wide variety of sources of oxidative stress under both physiologic and pathologic situations [1]. In most circumstances, the cell’s built-in defense mechanisms ensure that these stresses do not overwhelm the normal functioning of the cellular machinery [1]. In situations of acute or chronic stress or disease, however, these defense mechanisms may be overwhelmed or incapacitated. When this occurs, the cell may be destroyed, or its ability to properly function impaired, which in turn may lead to secondary disease processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheeseman KH, Slater TF. An introduction to free radical biochemistry. Br Med Bull 1993; 49: 481–493.

    PubMed  CAS  Google Scholar 

  2. Kloner RA, Przyklenk K, Whittaker P. Deleterious effects of oxygen radicals in ischemia/ reperfusion. Resolved and unresolved issues. Circulation 1989; 80: 1115–1127.

    Article  PubMed  CAS  Google Scholar 

  3. Flaherty JT. Myocardial injury mediated by oxygen free radicals. Symposium on oxidants and antioxidants. Am J Med 1991; 91(C): 3C79S-3C85S.

    Google Scholar 

  4. Kaneko M, Singal PK, Dhalla NS. Alterations in heart sarcolemmal Ca2+-ATPase and Ca2+-binding activities due to oxygen free radicals. Basic Res Cardiol 1990; 85: 45–54.

    Article  PubMed  CAS  Google Scholar 

  5. Zaleska MM, Wilson DF. Lipid hydroperoxides inhibit reacylation of phospholipids in neuronal membranes. J Neurochem 1989; 52: 255–260.

    Article  PubMed  CAS  Google Scholar 

  6. Cochrane CG. Mechanisms of oxidant injury of cells. Mol Aspects Med 1991; 12: 137–147.

    Article  PubMed  CAS  Google Scholar 

  7. Meij JTA, Suzuki S, Panagia V, Dhalla NS. Oxidative stress modifies the activity of cardiac sarcolemmal phopholipase C. Biochim Biophys Acta 1994; 1199: 6–12.

    PubMed  CAS  Google Scholar 

  8. Dai J, Meij JTA, Padua R, Panagia V. Depression of cardiac sarcolemmal phospholipase D activity by oxidant-induced thiol modification. Circ Res 1992; 71: 970–977.

    PubMed  CAS  Google Scholar 

  9. Julien P, Downar E, Angel A. Lipoprotein composition and transport in the pig and dog cardiac lymphatic system. Circ Res 1981; 49: 248–254.

    PubMed  CAS  Google Scholar 

  10. Steinbrecher UP, Parthasarathy S, Leake DS, Witztum JL, Steinberg D. Modification of low-density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low-density lipoprotein phospholipids. Proc Natl Acad Sci USA, 1984; 81: 3883–3887.

    Article  PubMed  CAS  Google Scholar 

  11. Witztum JL, Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 1991; 88: 1785–1792.

    Article  PubMed  CAS  Google Scholar 

  12. Noguchi N, Gotoh N, Niki E. Dynamics of the oxidation of low density lipoprotein induced by free radicals. Biochim Biophys Acta 1993; 1168: 348–357.

    PubMed  CAS  Google Scholar 

  13. Steinbrecher UP. Oxidation of human low density lipoprotein results in derivatization of lysine residues of apolipoprotein B by lipid peroxide decomposition products. J Biol Chem 1987; 262: 3603–3608.

    PubMed  CAS  Google Scholar 

  14. Noguchi N, Gotoh N, Niki E. Effects of ebselen and probucol on oxidative modifications of lipid and protein of low density lipoprotein induced by free radicals. Biochim Biophys Acta 1994; 1213: 176–182.

    PubMed  CAS  Google Scholar 

  15. Liu K, Massaeli H, Pierce GN. The action of oxidized low density lipoprotein on calcium transients in isolated rabbit cardiomyocytes. J Biol Chem 1993; 268: 4145–4151.

    PubMed  CAS  Google Scholar 

  16. Shinitzky M. Membrane fluidity and cellular functions. In: Shinitzky M, editor. Physiology of Membrane Fluidity, Vol. 1. Boca Raton, FL: CRC Press, 1984; 1–51.

    Google Scholar 

  17. Williams S, Meij JTA, Panagia V. Membrane phospholipids and adrenergic receptor function. Mol Cell Biochem 1995; 149 /150: 217–221.

    Article  PubMed  Google Scholar 

  18. Asano M, Hidaka H. Alterations in pharmacological receptor activities of rabbit arteries by sulfhydryl reagents. Jpn J Pharmacol 1983; 33: 227–240.

    Article  PubMed  CAS  Google Scholar 

  19. Bast A, Haenen GRMM. Receptor function in free radical mediated pathologies. In: Claassen V, editor. Trends in Drug Research. The Netherlands: Elsevier BV, 1990: 273–286.

    Google Scholar 

  20. Haenen GRMM, Veerman M, Bast A. Reduction of β-adrenoceptor function by oxidative stress in the heart. Free Radie Biol Med 1990; 9: 279–288.

    Article  CAS  Google Scholar 

  21. Kaneko M, Chapman DC, Ganguly PK, Beamish RE, Dhalla NS. Modification of cardiac adrenergic receptors by oxygen free radicals. Am J Physiol 1991; 260: H821–H826.

    PubMed  CAS  Google Scholar 

  22. Hara H, Kato H, Araki T, Onodera H, Kogure K. Involvement of lipid peroxidation and inhibitory mechanisms on ischemic neuronal damage in gerbil hippocampus: Quantitative autoradiographic studies on second messenger and neurotransmitter systems. Neuroscience 1991; 42: 159–169.

    Article  PubMed  CAS  Google Scholar 

  23. Kagiya T, Rocha-Singh KJ, Honbo N, Karliner JS. α1 Adrenoceptor mediated signal transduction in neonatal rat ventricular myocytes: effects of prolonged hypoxia and reoxygenation. Cardiovasc Res 1991; 25: 609–616.

    Article  PubMed  CAS  Google Scholar 

  24. Loesberg C, Van der Steit G, Hooyman GJ, Hensen EJ, Nijkamp FP. Membrane fluidity of guinea pig lymphocytes and the dysfunction of the respiratory airway and lymphocyte beta adrenergic systems of the guinea pig. Life Sci 1989; 45: 1227–1235.

    Article  PubMed  CAS  Google Scholar 

  25. Evora PRB, Pearson PJ, Schaff HV. Impaired endothelium-dependent relaxation after coronary reperfusion injury: evidence for G-protein dysfunction. Ann Thorac Surg 1994; 57: 1550–1556.

    Article  PubMed  CAS  Google Scholar 

  26. Fu LX, Ilebekk A, Kirkeben KA, Aksnes G, Waagstein F, Bergh CH, et al. Oxygen free radical injury and Gs mediated signal transduction in the stunned porcine myocardium. Cardiovasc Res 1992; 26: 449–455.

    Article  PubMed  CAS  Google Scholar 

  27. Ben-Arie N, Gileadi C, Schramm M. Interaction of the ß-adrenergic receptor with Gs following delipidation. Specific lipid requirements for Gs activation and GTPase function. Eur J Biochem 1988; 176: 649–654.

    Article  PubMed  CAS  Google Scholar 

  28. Resink TJ, Tkachuk VA, Bernhardt J, Bühler FR. Oxidized low density lipoproteins stimulate phosphoinositide turnover in cultured vascular smooth muscle cells. Arterioscler Thromb 1992; 12: 278–285.

    Article  PubMed  CAS  Google Scholar 

  29. Thorin E, Hamilton CA, Dominiczak MH, Reid JL. Chronic exposure of cultured bovine endothelial cells to oxidized LDL abolishes prostacyclin release. Arterioscler Thromb 1994; 14: 453–459.

    Article  PubMed  CAS  Google Scholar 

  30. Gopalakrishna R, Anderson WB. Susceptibility of protein kinase C to oxidative inactivation: loss of both phosphotransferase activity and phorbol diester binding. FEBS Lett 1987; 225: 233–237.

    Article  PubMed  CAS  Google Scholar 

  31. Liu K, Pierce GN. The effects of low density lipoprotein on calcium transients in isolated rabbit cardiomyocytes. J Biol Chem 1993; 268: 376–3775.

    Google Scholar 

  32. Brown MS, Basu SK, Falck JR, Ho YK, Goldstein JL. The scavenger cell pathway for lipoprotein degradation: Specificity of the binding site that mediates the uptake of negatively-charged LDL by macrophages. J Supramol Struct 1980; 13: 67–81.

    Article  PubMed  CAS  Google Scholar 

  33. Kugiyama K, Henry PD. Transfer of lysophosphatidylcholine from oxidized LDL to endothelial cells impairs endothelium-dependent arterial relaxation. J Am Coll Cardiol 1990; 15: 12A.

    Google Scholar 

  34. Stoll LL, Spector AA. Lysophosphatidylcholine causes cGMP-dependent verapamil-sensitive Ca2+ influx in vascular smooth muscle cells. Am J Physiol 1993; 264: C885–C893.

    PubMed  CAS  Google Scholar 

  35. Yokoyama M, Hirata K, Miyake R, Akita H, Ishikawa Y, Fukuzaki H. Lysophosphatidylcholine: essential role in the inhibition of endothelium-dependent vasorelaxation by oxidized low density lipoprotein. Biochem Biophys Res Commun 1990; 168: 301–308.

    Article  PubMed  CAS  Google Scholar 

  36. Kugiyama K, Ohgushi M, Sugiyama S, Murohara T, Fukunaga K, Miyamoto E, et al. Lysophosphatidylcholine inhibits surface receptor-mediated intracellular signals in endothelial cells by a pathway involving protein kinase C activation. Circ Res 1992; 71: 1422–1428.

    PubMed  CAS  Google Scholar 

  37. Ohgushi M, Kugiyama K, Fukunaga K, Murohara T, Sugiyama S, Miyamoto E, et al. Protein kinase C inhibitors prevent impairment of endothelium-dependent relaxation by oxidatively modified LDL. Arterioscler Thromb 1993; 13: 1525–1532.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Czubryt, M.P., Panagia, V., Pierce, G.N. (1996). The roles of free radicals, peroxides and oxidized lipoproteins in second messenger system dysfunction. In: Karmazyn, M. (eds) Myocardial Ischemia: Mechanisms, Reperfusion, Protection. EXS, vol 76. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8988-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8988-9_4

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9857-7

  • Online ISBN: 978-3-0348-8988-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics