Skip to main content

The molecular basis of adaptation to ischemia in the heart: The role of stress proteins and anti-oxidants in the ischemic and reperfused heart

  • Chapter

Part of the book series: EXS ((EXS,volume 76))

Abstract

When blood flow to the myocardium is interrupted, for example during a coronary occlusion or coronary artery spasm, the resulting ischemia is characterised by certain metabolic and ultrastructural perturbations including a fall in intracellular pH, decreased ATP levels, decreased glucose levels, increased lactate levels, membrane damage, electromechanical uncoupling and uncoupling of mitochondrial oxidative phosphorylation [1]. This hypoxic phase, with its associated oxygen depletion, therefore leads to significant metabolic stress. When blood flow and, therefore, oxygen are returned to the hypoxic tissue during reperfusion, oxidative stress occurs due to oxygen-derived free radical formation which causes further damage to membranes (via lipid peroxidation), nucleic acids and proteins. In addition, reperfusion is associated with intracellular and mitochondrial calcium overload which causes further damage and uncoupling of respiration and contraction. If ischemia is prolonged, inevitably the changes become irreversible and cell death and tissue necrosis occur.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Poole-Wilson PA. What causes cell death? In: Hearse DJ and Yellon DM, editors. Thearapeutic approaches to myocardial infarct size limitation. New York, Raven press 1984: 43–60.

    Google Scholar 

  2. Anderson HV, Willerson JT. Current concepts: thrombolysis in acute myocardial infarction. New Engl J Med 1993; 329: 703–709.

    Article  PubMed  CAS  Google Scholar 

  3. LATE Study Group. Late assessment of thrombolytic efficacy (LATE) study with alteplase 6–24 hours after onset of acute myocardial infraction. Lancet 1993; 342: 759 - 766.

    Article  Google Scholar 

  4. Minowada G, Welch WJ. Clinical implications of the stress response. J Clin Invest 1993; 95: 3–12.

    Article  Google Scholar 

  5. Yellon DM, Latchman DS. Stress proteins and myocardial protection. J Mol Cell Cardiol 1992; 24: 113–124.

    Article  PubMed  CAS  Google Scholar 

  6. Yellon DM, Marber MS. Hsp70 in myocardial ischemia. Experientia 1994; 50: 1075–1084.

    Article  PubMed  CAS  Google Scholar 

  7. Mestril R, Dillman WH. Heat shock proteins and protection against myocardial ischemia. J Mol Cell Cardiol 1995; 27: 45–52.

    Article  PubMed  CAS  Google Scholar 

  8. Knowlton AA. The role of heat shock proteins in the heart. J Mol Cell Cardiol 1995; 27: 121–131.

    Article  PubMed  CAS  Google Scholar 

  9. Das DK, Maulik N, Moraru II. Gene expression in acute myocardial stress. Induction by hypoxia, ischemia, reperfusion, hyperthemia and oxidative stress. J Mol Cell Cardiol 1995; 27: 181–193.

    Article  PubMed  CAS  Google Scholar 

  10. Currie RW, Karmazyn M, Kloc M, Mailer K. Heat shock response is associated with enhanced postischemic ventricular recovery. Circ Res 1988; 63: 543–549.

    PubMed  CAS  Google Scholar 

  11. Karmazyn M, Mailer K, Currie RW. Aquisition and decay of heat-shock-enhanced postischemic ventricular recovery. Am J Physiol 1990; 259 Heart Circ Physiol): H424–H431.

    Google Scholar 

  12. Murray CE, Jennings RB, Reimer KA. New insights into potential mechanisms of ischemic preconditioning. Circulation, 1991; 84 (1): 442–445.

    Google Scholar 

  13. Walker DM, Yellon DM. Ischaemic preconditioning: from mechanisms to exploitation. Cardiovasc Res 1992; 26: 734–739.

    Article  PubMed  CAS  Google Scholar 

  14. Baxter CF, Yellon DM. Ischaemic preconditioning of myocardium: a new paradigm for clinical cardioprotection? Br J Clin Pharmacol 1994; 38: 381–387.

    PubMed  CAS  Google Scholar 

  15. Speechley-Dick ME, Mocanu MM, Yellon DM. Protein kinase C: its role in ischemic preconditioning, Circ Res 1994; 75: 586–590.

    Google Scholar 

  16. Mitchell, MB, Meng X, Ao L. et al. Preconditioning of isolated rat heart is mediated by protein kinase C. Circ Res 1995; 76: 73–81.

    PubMed  CAS  Google Scholar 

  17. Baxter GF, Marber MS, Patel VC, Yellon DM. Adenosine receptor involvement in a delayed phase of myocardial protection 24 hours after ischemic preconditioning. Circulation 1994; 90: 2993–3000.

    PubMed  CAS  Google Scholar 

  18. Baxter GF, Goma FM, Yellon DM. Involvement of protein kinase C in the delayed cytoprotection following sublethal ischemia in rabbit myocardium. Br J Pharmacol 1995; 115: 222–224.

    PubMed  CAS  Google Scholar 

  19. Marber M, Latchman DS, Walker JM, Yellon DM. Cardiac stress protein elevation 24 hours following brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 1993; 88: 1264–1272.

    PubMed  CAS  Google Scholar 

  20. Kuzuya T, Hoshida S, Yamashita N, et al. Delayed effects of sublethal ischemia on the aquisition of tolerance of ischemia. Circ Res 1993; 72: 1293–1299.

    PubMed  CAS  Google Scholar 

  21. Lui GS, Thornton J, Van Winkle DM, et al. Protection against infarction afforded by preconditioning is mediated by adenosine Al receptors in rabbit heart. Circulation, 1991; 84: 350–356.

    Google Scholar 

  22. Baxter GF, Marber MS, Patel VC, Yellon DM. A “second window” of protection 24 hours after ischemic preconditioning may be dependent on adenosine receptor activation. Circulation 1993; 88 (suppl. I): 1–101 (abstract).

    Google Scholar 

  23. Ikonomidis JS, Tumiati LC, Weisel RD, et al. Preconditioning human ventricular cardiomyocytes with brief periods of simulated ischemia. Cardiovascular Res 1994; 28: 1285–1291.

    Article  CAS  Google Scholar 

  24. Armstrong S, Downey JM, Ganote CE. Preconditioning of isolated rabbit cardiomyocytes: Induction by metabolic stress and blockade by the adenosine antagonist SPT and calphostin C, a protein kinase C inhibitor. Cardiovasc Res 1994; 28: 72–77.

    Article  PubMed  CAS  Google Scholar 

  25. Yamashita N, Nishida M, Hoshida S, et al. Induction of mangenese superoxide dismutase in rat cardiac myocytes increases tolerance to hypoxia 24 hours after preconditioning. J Clin Invest 1994; 94: 2193–2199.

    Article  PubMed  CAS  Google Scholar 

  26. Osbourne DL, Aw TY, Cepinskas G, et al. Development of ischemia/reperfusion tolerance in the rat small intestine: an epithelium-dependent event. J Clin Invest 1994; 94: 1910–1918.

    Article  Google Scholar 

  27. Lindquist S, Craig E. The heat shock proteins. Ann Rev Gen 1988; 22: 631–677.

    Article  CAS  Google Scholar 

  28. Welch WJ. The mammalian stress response: cell physiology and biochemistry of stress proteins. In: Morimoto RI, Tissieres A, Georgopoulos C, editors. Stress proteins in biology and medicine, Cold Spring Harbour Laboratory Press 1990; 223–278.

    Google Scholar 

  29. Das DK, Engelman RM, Kimura Y. Molecular adaptation of cellular defences following preconditioning of the heart by repeated ischemia. Cardiovascular Res 1993; 27: 578 - 584.

    Article  CAS  Google Scholar 

  30. Heads RJ, Yellon DM, Latchman DS. Differential cytoprotection against heat stress or hypoxia following expression of specific stress protein genes in myogenic cells. J Mol Cell Cardiol 1995; 27: 1669–1678.

    Article  PubMed  CAS  Google Scholar 

  31. Currie RW, Tanguay RM, Kingma JG. Heat-shock response and limitation of tissue necrosis during occlusion/reperfusion in rabbit hearts. Circulation, 1993; 87: 963–971.

    PubMed  CAS  Google Scholar 

  32. Morimoto R, Milarski KL. Expression and function of vertebrate hsp70 genes. In: Morimoto RI, Tissieres A, Georgopoulos C, editors. Stress proteins in biology and medicine, Cold Spring Harbour Laboratory Press, 1990; 223–278.

    Google Scholar 

  33. Ciavarra RP, Goldman C, Wen K-K, et al. Heat stress induces hsc70/nuclear topoiso-merase I complex formation in vivo: evidence for hsc70-mediated, ATP-independent reactivation in vitro. Proc Natl Acad Sci USA 1994; 91: 1751–1755.

    Article  PubMed  CAS  Google Scholar 

  34. Patriarca EJ, Maresca B. Aquired thermotolerance following heat shock protein synthesis prevents impairment of mitochondrial ATPase activity at elevated temperatures in Sac-charomyces cerevusiae. Exp Cell Res 1990; 190: 57–64.

    Article  PubMed  CAS  Google Scholar 

  35. Yellon DM, Pasini E, Cargnoni A, Marber MS, Latchman DS, Ferrari R. The protective role of heat stress in the ischemic and reperfused rabbit myocardium. J Mol Cell Cardiol 1992; 24: 895–907.

    Article  PubMed  CAS  Google Scholar 

  36. Baker KP, Schatz G. Mitochondrial proteins essential for viability mediate protein import into yeast mitochondria. Nature 1991; 349: 205–208.

    Article  PubMed  CAS  Google Scholar 

  37. Heads RJ, Latchman DS, Yellon DM. Differential stress protein mRNA expression during early ischemic preconditioning and its relationship to adenosine receptor function. J Mol Cell Cardiol 1995; 27: 2133–2148.

    Article  PubMed  CAS  Google Scholar 

  38. Luis AM, Aleonada A, Cuezva JM. The a-regulatory subunit of the mitochondrial FrATPase complex is a heat shock protein. J Biol Chem 1990; 265 (14): 7713–7716.

    PubMed  CAS  Google Scholar 

  39. Faucher C, Capdevielle J, Canal I, et al. The 28-kDa protein whose phosphorylation is induced by protein kinase C activators in MCF-7 cells belongs to the family of low molecular mass heat shock proteins and is the eostrogen-related 24-kDa protein. J Biol Chem 1993; 268 (20): 15168–15173.

    PubMed  CAS  Google Scholar 

  40. Huot J, Roy G, Lambert H, et al. Increased survival after treatments with anticancer agents of chinese hamster cells expressing the human Mr 27 000 heat shock protein. Cancer Research 1991; 51: 5245–5252.

    PubMed  CAS  Google Scholar 

  41. Landry J, Chretien P, Lambert H, et al. Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. J Cell Biol 1989; 109: 7–15.

    Article  PubMed  CAS  Google Scholar 

  42. Lavoie JN, Hickey E, Weber LA, Landry J. Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27. J Biol Chem 1993; 268 (2): 24210–24214.

    PubMed  CAS  Google Scholar 

  43. Bennardini F, Wrzosek A, Chiesi M. aB-Crystalin in cardiac tissue: Association with actin and desmin filaments. Circ Res 1992; 71: 288–294.

    PubMed  CAS  Google Scholar 

  44. Armstrong SC, Ganóte CE. Flow cytometric analysis of isolated adult cardiomyocytes: Vinculin and tubulin flourescence during metabolic inhibition and ischemia. J Mol Cell Cardiol 1992; 24: 149–162.

    Article  PubMed  CAS  Google Scholar 

  45. Yost HJ, Petersen RB, Lindquist S. Posttranscriptional regulation of heat shock protein synthesis in Drosophila. In: Morimoto RI, Tissieres A, Georgopulos C, editors. Stress proteins in biology and medicine, Cold Spring Harbour Laboratory Press 1990; 379–409.

    Google Scholar 

  46. Wu C, Zimarino V, Tsai C, et al. Transcriptional regulation of heat shock genes. In: Morimoto RI, Tissieres A, Georgopoulos C, editors. Stress protein in biology and medicine, Cold Spring Harbour Laboratory Press 1990; 421–442.

    Google Scholar 

  47. Sherman MY, Goldberg AL. Heat shock in Escherichia coli alters the protein-binding properties of the chaperonin groEL by inducing its phosphorylation. Nature 1992; 357: 167 - 169.

    Article  PubMed  CAS  Google Scholar 

  48. Freshney NW, Rawlinson L, Guesden F, et al. Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell 1994; 78: 1039–1049.

    Article  PubMed  CAS  Google Scholar 

  49. Rouse J, Cohen P, Trigon S, et al. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 1994; 78: 1027–1037.

    Google Scholar 

  50. Martin JL, Mestril R, Hickey E, et al. HSP27 and protection against ischemic damage. J Mol Cell Cardiol 1995; 27(5) (suppl): A20 (abstract).

    Google Scholar 

  51. Knowlton AA, Brecher P, Apstein CS. Rapid expression of heat shock protein in the rabbit after brief cardiac ischemia. J Clin Invest 1991; 87: 139–147.

    Article  PubMed  CAS  Google Scholar 

  52. Benjamin IJ, Kroger B, Williams RS. Activation of heat shock transcription factor by hypoxia in mammalian cells. Proc Natl Acad Sci USA 1990; 87: 6263–6267.

    Article  PubMed  CAS  Google Scholar 

  53. Iwaki K, Chi S-H, Dillman WH, Mestril R. Induction of HSP70 in cultured rat neonatal cardiomyocytes by hypoxia and metabolic stress. Circulation 1993; 87: 2023–2032.

    PubMed  CAS  Google Scholar 

  54. Hutter MM, Sievers RE, Barbosa V, Wolfe CL. Heat shock protein induction in rat hearts: A direct correlation between the amount of heat shock protein induced and the degree of myocardial protection. Circulation 1994; 89: 355–360.

    PubMed  CAS  Google Scholar 

  55. Mestril R, Chi S-H, Sayen R, et al. Expression of inducible stress protein 70 in rat heart myogenic cells confers protection against simulated ischemia-induced injury. J Clin Invest 1994; 93: 759–767.

    Article  PubMed  CAS  Google Scholar 

  56. Donnely TJ, Seivers RE, Vissern FLJ, et al. Heat shock protein induction in rat hearts: A role for improved myocardial salvage after ischemia and reperfusion? Circulation 1992; 85: 769–778.

    Google Scholar 

  57. Tanaka M, Fujiwara H, Yamasaki K, et al. Ischemic preconditioning elevates cardiac stress protein but does not limit infarct size 24 or 48 h later in rabbits. Am J Physiol 1994; 267: H1476–H1482.

    PubMed  CAS  Google Scholar 

  58. Currie RW, Tanguay RM. Analysis of RNA for transcripts for catalase and SP71 in rat hearts after in vivo hyperthermia. Biochem Cell Biol 1991; 69: 375–382.

    Article  PubMed  CAS  Google Scholar 

  59. Mestril R, Chi S-H, Sayen MR, Dillman WH. Isolation of a novel inducible rat heat-shock protein (HSP70) gene and its expression during ischemia/hypoxia and heat shock. Biochem J 1994; 298: 561–569.

    PubMed  CAS  Google Scholar 

  60. Benjamin IJ, Horie S, Greenberg ML, et al. Induction of stress proteins in cultured myogenic cells: Molecular signals for the activation of heat shock transcription factor during ischemia. J Clin Invest 1992; 89: 1658–1689.

    Article  Google Scholar 

  61. Kukreja PC, Kontos MC, Loesser KE, et al. Oxidant stress increases heat shock protein 70 mRNA in isolated perfused rat heart. Am J Physiol 1994; 267 (6 pt 2): H2213 - H2219.

    PubMed  CAS  Google Scholar 

  62. Moalic JM, Bauters C, Himbert D, et al. Phenylephrine, vasopressin and angiotensin II as determinants of proto-oncogene and heat shock protein gene expression in adult rat heart and aorta. J. Hypertension 1989; 7: 195–201.

    Article  CAS  Google Scholar 

  63. Heads RJ, Latchman DS, Yellon DM. Stable high level expression of a transfected human hsp70 gene protects a heart-derived muscel cell line against thermal stress. J Mol Cell Cardiol 1994; 26: 695–699.

    Article  PubMed  CAS  Google Scholar 

  64. Williams RS, Thomas JA, Fina M, et al. Human heat shock protein 70 (hsp70) protects murine cells from injury during metabolic stress. J Clin Invest 1993; 92: 503–508.

    Article  PubMed  CAS  Google Scholar 

  65. Williams RS, Thomas JA, Fina M, et al. Human heat shock protein 70 (hsp70) protects murine cells from injury during metabolic stress. J Clin Invest 1993; 92: 503–508.

    Article  PubMed  CAS  Google Scholar 

  66. Plumier, J-C. L, Ross BM, Currie RW, et al. Transgenic mice expressing the human heat shock protein 70 have improved post-ischemic myocardial recovery. J Clin Invest 1995; 95: 1854–1860.

    Article  PubMed  CAS  Google Scholar 

  67. Radford N, Fina M, Benjamin IJ, et al. Enhanced functional and metabolic recovery following ischemia in intact hearts from hsp70 transgenic mice. Circulation 1994; 90 (4 part 2): I-G (abstract).

    Google Scholar 

  68. Marber MS, Mestril R, Chi S-H, Sayen MR, et al. Overexpression of the rat inducible 70 kDa heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest 1995; 95: 1446–1456.

    Article  PubMed  CAS  Google Scholar 

  69. Steare SE, Yellon DM. The potential for endogenous myocardial antioxidants to protect the myocardium against ischemia-reperfusion injury: Refreshing the parts exogenous antioxidants cannot reach? J Mol Cell Cardiol 1995; 27 (1): 65–74.

    Article  PubMed  CAS  Google Scholar 

  70. Melendez JA, Baglioni C. Differential induction and decay of mangenese superoxide dismutase mRNAs. Free Radical Biology and Medicine 1993; 14: 601–608.

    Article  PubMed  CAS  Google Scholar 

  71. Keyse SM, Tyrrell RM. Heme oxygenase is a major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide and sodium aresenite. Proc Natl Acad Sci USA 1989; 86: 99–103.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Berkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Heads, R.J., Latchman, D.S., Yellon, D.M. (1996). The molecular basis of adaptation to ischemia in the heart: The role of stress proteins and anti-oxidants in the ischemic and reperfused heart. In: Karmazyn, M. (eds) Myocardial Ischemia: Mechanisms, Reperfusion, Protection. EXS, vol 76. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8988-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8988-9_23

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9857-7

  • Online ISBN: 978-3-0348-8988-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics