Skip to main content

Sodium-hydrogen exchange in myocardial ischemia and reperfusion: A critical determinant of injury?

  • Chapter
Myocardial Ischemia: Mechanisms, Reperfusion, Protection

Part of the book series: EXS ((EXS,volume 76))

Abstract

The plasma membrane sodium-hydrogen (Na+-H+) exchanger is a ubiquitous protein which, under normal conditions, extrudes one H+ from the cell in exchange for one Na+ entering the cell. The exchanger is thought to serve a number of key physiological functions in various cell types [1]. These include the regulation of intracellular pH and cell volume (by virtue of the ability of the exchanger to transport H+ and Na+, respectively) and control of cell growth and proliferation (by mediating the actions of a number of mitogens and growth factors). Abnormalities in Na+-H+ exchanger activity have been implicated also in several pathophysiological processes, including renal acid-base disorders and cancer [1]. With respect to the cardiovascular system, the Na+-H+ exchanger is believed to be involved in the regulation of platelet [2] and vascular smooth muscle cell [3] function. Furthermore, increased exchanger activity has been linked with both hypertension [4] and the proliferative response of vascular smooth muscle cells to arterial injury [3]. However, perhaps the strongest evidence in favor of a pathophysiological role for the Na+-H+ exchanger in the cardiovascular system is in relation to the potential involvement of the cardiac sarcolemmal exchanger in mediating the unfavourable sequelae of myocardial ischemia and reperfusion. Recent reviews [5, 6] have assessed critically such evidence and the underlying cellular mechanisms; therefore, the present article will not discuss at length historical findings. Instead, its objective will be to highlight the very recent advances that have been made in: i) pharmacological inhibition of the Na+-H+ exchanger, with therapeutic benefit, in experimental studies of myocardial ischemia and reperfusion, and ii) understanding of the molecular structure and regulation of the Na+-H+ exchanger, with particular emphasis on modulation of exchanger activity by neurohormonal agents that may play a role in myocardial ischemia and reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mahnensmith RL, Aronson PS. The plasma membrane sodium-hydrogen exchanger and its role in physiological and pathophysiological processes. Circ Res 1985; 57: 773 – 788.

    Google Scholar 

  2. Siffert W. Regulation of platelet function by sodium-hydrogen exchange. Cardiovasc Res 1995; 29: 160 – 166.

    PubMed  CAS  Google Scholar 

  3. Lucchesi PA, Berk BC. Regulation of sodium-hydrogen exchange in vascular smooth muscle. Cardiovasc Res 1995; 29: 172 – 177.

    PubMed  CAS  Google Scholar 

  4. Rosskopf D, Dusing R, Siffert W. Membrane sodium-proton exchange and primary hypertension. Hypertension 1993; 21: 607 – 617.

    PubMed  CAS  Google Scholar 

  5. Karmazyn M, Moffat MP. Role of Na+/H+ exchange in cardiac physiology and pathophysiology: mediation of reperfusion injury by the pH paradox. Cardiovasc Res 1993; 27: 915 – 924.

    Article  PubMed  CAS  Google Scholar 

  6. Scholz W, Albus U. Na+/H+ exchange and its inhibition in cardiac ischemia and reperfusion. Basic Res Cardiol 1993; 88: 443 – 455.

    Article  PubMed  CAS  Google Scholar 

  7. Karmazyn M. Amiloride enhances postischemic ventricular recovery: possible role of Na+-H+ exchange. Am J Physiol 1988; 255: H608 – H615.

    PubMed  CAS  Google Scholar 

  8. Kleyman TR, Cragoe EJ Jr. Amiloride and ift analogs as tools in the study of ion transport. J Membrane Biol 1988; 105: 1 – 21.

    Article  CAS  Google Scholar 

  9. Scholz W, Albus U. Potential of selective sodium-hydrogen exchange inhibitors in cardiovascular therapy. Cardiovasc Res 1995; 29: 184 – 188.

    PubMed  CAS  Google Scholar 

  10. Pierce GN, Cole WC, Liu K, Massaeli H, Maddaford TG, Chen YJ, et al. Modulation of cardiac performance by amiloride and several selected derivatives of amiloride. J Pharma¬col Exp Ther 1993; 265: 1280 – 1291.

    CAS  Google Scholar 

  11. Yasutake M, Ibuki C, Hearse DJ, Avkiran M. Na+/H+ exchange and reperfusion arrhythmias: protection by intracoronary infusion of a novel inhibitor. Am J Physiol 1994; 267: H2430 – H2440.

    PubMed  CAS  Google Scholar 

  12. Moffat MP, Karmazyn M. Protective effects of the potent Na/H exchange inhibitor methylisobutyl amiloride against post-ischemic contractile dysfunction in rat and guinea-pig hearts. J Mol Cell Cardiol 1993; 25: 959 – 971.

    Article  PubMed  CAS  Google Scholar 

  13. Myers ML, Mathur S, Li G-H, Karmazyn M. Sodium-hydrogen exchange inhibitors improve postischaemic recovery of function in the perfused rabbit heart. Cardiovasc Res 19’95; 29: 209–214.

    Google Scholar 

  14. Scholz W, Albus U, Lang HJ, Linz W, Martorana PA, Englert HC, et al. HOE 694, a new Na+/H+ exchange inhibitor and its effects in cardiac ischaemia. Br J Pharmacol 1993; 109: 562 – 568.

    PubMed  CAS  Google Scholar 

  15. Shimada Y, Hearse DJ, Avkiran M. Impact of extracellular buffer composition on cardioprotective efficacy of Na+/H+ exchanger inhibitors. Am J Physiol 1996; 270: H692 – H700.

    PubMed  CAS  Google Scholar 

  16. Scholz W, Albus U, Counillon L, Gögelein H, Lang HJ, Linz W, et al. Protective effects of HOE642, a selective sodium-hydrogen exchange subtype 1 inhibitor, on cardiac ischaemia and reperfusion. Cardiovasc Res 1995; 29: 260 – 268.

    PubMed  CAS  Google Scholar 

  17. du Toit EF, Opie LH. Role for the Na+/H+ exchanger in reperfusion stunning in isolated perfused rat heart. J Cardiovasc Pharmacol 1993; 22: 877 – 883.

    Article  PubMed  Google Scholar 

  18. Meng HP, Pierce GN. Protective effects of 5-(N,N-dimethyl)amiloride on ischemia-reper-fusion injury in hearts. Am J Physiol 1990; 258: H1615 – H1619.

    PubMed  CAS  Google Scholar 

  19. Meng HP, Maddaford TG, Pierce GN. Effect of amiloride and selected analogues on postischemic recovery of cardiac contractile function. Am J Physiol 1993; 264: H183 – H1835.

    Google Scholar 

  20. Hendrikx M, Mubagwa K, Verdonck F, Overloop K, Van Hecke P, Vanstapel F, et al. New Na+/H+ exchange inhibitor HOE694 improves postischemic function and high-energy phosphate resynthesis and reduces Ca2+ overload in isolated perfused rabbit heart. Circulation 1994; 89: 2787 – 2798.

    PubMed  CAS  Google Scholar 

  21. Pike MM, Luo CS, Clark D, Kirk KA, Kitakaze M, Madden MC, et al. NMR measurements of Na+ and cellular energy in ischemic rat heart: role of Na+/H+ exchange. Am J Physiol 1993; 265: H2017 – H2026.

    PubMed  CAS  Google Scholar 

  22. Lagadic-Gossmann D, Buckler KJ, Vaughan-Jones RD. Role of bicarbonate in pH recovery from intracellular acidosis in the guinea-pig ventricular myocyte. J Physiol 1992; 458: 361 – 384.

    PubMed  CAS  Google Scholar 

  23. Noël J, Pouysségur J. Hormonal regulation, pharmacology, and membrane sorting of vertebrate Na+/H+ exchanger isoforms. Am J Physiol 1995; 268: C283 – C296.

    PubMed  Google Scholar 

  24. Fliegel L, Dyck JRB. Molecular biology of the cardiac sodium/hydrogen exchanger. Cardiovasc Res 1995; 29: 155 – 159.

    PubMed  CAS  Google Scholar 

  25. Counillon L, Pouysségur J, Structure-function studies and molecular regulation of the growth factor activatable sodium-hydrogen exchanger (NHE-1). Cardiovasc Res 1995; 29: 147 – 154.

    PubMed  CAS  Google Scholar 

  26. Wallert MA, Fröhlich O. α1-adrenergic stimulation of Na-H exchange in cardiac myocytes. Am J Physiol 1992; 263: C1096 - C1102.

    PubMed  CAS  Google Scholar 

  27. Gambassi G, Spurgeon HA, Lakatta EG, Blank PS, Capogrossi MC. Different effects of a- and ß-adrenergic stimulation on cytosolic pH and myofilament responsiveness to Ca2+ in cardiac myocytes. Circ Res 1992; 71: 870 – 882.

    PubMed  CAS  Google Scholar 

  28. Pucéat M, Clément-Chomienne O, Terzic A, Vassort G. α1-adrenoceptor and purinocep-tor agonists modulate Na-H antiport in single cardiac cells. Am J Physiol 1993; 264: H310 – H319.

    PubMed  Google Scholar 

  29. Lagadic-Gossmann D, Vaughan-Jones RD. Coupling of dual acid extrusion in the guinea-pig isolated ventricular myocyte to α1- and β-adrenoceptors. J Physiol 1993; 464: 49 – 73.

    PubMed  CAS  Google Scholar 

  30. Kramer BK, Smith TW, Kelly RA. Endothelin and increased contractility in adult rat ventricular myocytes. Role of intracellular alkalosis induced by activation of the protein kinase C-dependent Na+-H+ exchanger. Circ Res 1991; 68: 269 – 279.

    PubMed  CAS  Google Scholar 

  31. Matsui H, Barry WH, Livsey C, Spitzer KW. Angiotensin II stimulates sodium-hydrogen exchange in rabbit ventricular myocytes. Cardiovasc Res 1995; 29: 215 – 221.

    PubMed  CAS  Google Scholar 

  32. Scholz J, Troll U, Sandig P, Schmitz W, Scholz H, Schulte Am Esch J. Existence and a!-adrenergic stimulation of inositol polyphosphates in mammalian heart. Mol Pharmacol 1992; 42: 134 – 140.

    PubMed  CAS  Google Scholar 

  33. Hilal-Dandan R, Urasawa K, Brunton LL. Endothelin inhibits adenylate cyclase and stimulates phosphoinositide hydrolysis in adult cardiac myocytes. J Biol Chem 1992; 267: 10620 – 10624.

    PubMed  CAS  Google Scholar 

  34. Sechi LA, Griffin CA, Grady EF, Kalinyak JE, Schambelan M. Characterization of angiotensin II receptor subtypes in rat heart. Circ Res 1992; 71: 1482 – 1489.

    PubMed  CAS  Google Scholar 

  35. Nishizuka Y. Protein kinase C and lipid signalling for sustained cellular responses. FASEB J 1995; 9: 484 – 496.

    PubMed  CAS  Google Scholar 

  36. Sardet C, Counillon L, Franchi A, Pouysségur J. Growth factors induce phosphorylation of the Na+/H+ antiporter, a glycoprotein of HOkD. Science 1990; 247: 723 – 726.

    Article  PubMed  CAS  Google Scholar 

  37. Sardet C, Fafournoux P, Pouysségur J. α-Thrombin, epidermal growth factor, and okadaic acid activate the Na+/H+ exchanger, NHE-1, by phosphorylating a set of common sites. J Biol Chem 1991; 266: 19166 – 19171.

    PubMed  CAS  Google Scholar 

  38. Wakabayashi S, Sardet C, Fafournoux P, Counillon L, Meloche S, Pages G, et al. Structure function of the growth factor-activatable Na+/H+ exchanger (NHE-1). Rev Physiol Biochem Pharmacol 1992; 119: 157 – 186.

    PubMed  CAS  Google Scholar 

  39. Fliegel L, Walsh MP, Singh D, Wong C, Barr A. Phosphorylation of the C-terminal domain of the Na+/H+ exchanger by Ca2+/calmodulin-dependent protein kinase II. Biochem J 1992; 282: 139 – 145.

    PubMed  CAS  Google Scholar 

  40. Fliegel L, Sardet C, Pouysségur J, Barr A. Identification of the protein and cDNA of the cardiac Na+/H+ exchanger. FEBS Lett 1991; 279: 25 – 29.

    Article  PubMed  CAS  Google Scholar 

  41. Black SC, Fagbemi SO, Chi L, Friedrichs GS, Lucchesi BR. Phorbol ester-induced ventricular fibrillation in the Langendorff-perfused rabbit heart: antagonism by stauroporine and glibenclamide. J Mol Cell Cardiol 1993; 25: 1427 – 1438.

    Article  PubMed  CAS  Google Scholar 

  42. Khandoudi N, Moffat MP, Karmazyn M. Adensine-sensitive α1-adrenoceptor effects on reperfused ischaemic hearts: comparison with phorbol ester. Br J Pharmacol 1994; 112: 1007 – 1016.

    PubMed  CAS  Google Scholar 

  43. Khandoudi N, Ho J, Karmazyn M. Role of Na+-H+ exchange in mediating effects of endothelin-1 on normal and ischemic/reperfused hearts. Circ Res 1994; 75: 369 – 378.

    PubMed  CAS  Google Scholar 

  44. Yasutake M, Avkiran M. Exacerbation of reperfusion arrhythmias by α1-adrenergic stimulation: a potential role for receptor-mediated activation of sarcolemmal sodium-hydrogen exchange. Cardiovasc Res 1995; 29: 222 – 230.

    PubMed  CAS  Google Scholar 

  45. Schömig A, Richardt G. Cardiac sympathetic activity in myocardial ischemia: release and effects of noradrenaline. Basic Res Cardiol 1990; 85 (suppl 1): 9 – 30.

    PubMed  Google Scholar 

  46. Tonnessen T, Naess PA, Kirkeboen KA, Offstad J, Ilebekk A, Christensen G. Endothelin is released from the porcine coronary circulation after short-term ischemia. J Cardiovasc Pharmacol 1993; 22 (8): S313 – S316.

    Article  PubMed  Google Scholar 

  47. Corr PB, Yamada KA, DaTorre SD. Modulation of a-adrenergic receptors and their intracellular coupling in the ischemic heart. Basic Res Cardiol 1990; 85 (1): 31 – 45.

    PubMed  Google Scholar 

  48. Liu J, Chen R, Casley DJ, Nayler WG. Ischemia and reperfusion increase 125I-labeled endothelin-1 binding in rat cardiac membranes. Am J Physiol 1990; 258: H829 – H835.

    PubMed  CAS  Google Scholar 

  49. Coughlin SR. Thrombin receptor function and cardiovascular disease. Trends Cardiovasc Med 1994; 4: 77 – 83.

    Article  PubMed  CAS  Google Scholar 

  50. Nieuwland R, van Willigen G, Akkerman JW. Different pathways for control of Na+/H+ exchange via activation of the thrombin receptor. Biochem J 1994; 297: 47 – 52.

    PubMed  CAS  Google Scholar 

  51. Ghigo D, Bussolino F, Garbarino G, Heller R, Turrini F, Pescarmona G, et al. Role of Na+/H+ exchange in thrombin-induced platelet-activating factor production by human endothelial cells. J Biol Chem 1988; 263: 19437 – 19446.

    PubMed  CAS  Google Scholar 

  52. Berk BC, Taubman MB, Cragoe EJJ, Fenton JW, Griendling KK. Thrombin signal transduction mechanisms in rat vascular smooth muscle cells: calcium and protein kinase C-dependent and -independent pathways. J Biol Chem 1990, 265: 17334 – 17340.

    PubMed  CAS  Google Scholar 

  53. Steinberg SF, Robinson RB, Lieberman HB, Stern DM, Rosen MR. Thromobin modulates phosphoinositide metabolism, cytosolic calcium, and impulse initiation in the heart. Circ Res 1991; 68: 1216 – 1229.

    PubMed  CAS  Google Scholar 

  54. Glembotski CC, Irons CE, Krown KA, Murray SF, Sprenkle AB, Sei CA. Myocardial a-thrombin receptor activation induces hypertrophy and increases atrial natriuretic factor gene expression. J Biol Chem 1993; 268: 20646 – 20652.

    PubMed  CAS  Google Scholar 

  55. Goldstein JA, Butterfield MC, Ohnishi Y, Shelton TJ, Corr PB. Arrhythmogenic influence of intracoronary thrombosis during acute myocardial ischemia. Circulation 1994; 90: 139 – 147.

    PubMed  CAS  Google Scholar 

  56. Yan GX, Park TH, Corr PB. Activation of thrombin receptor increases intracellular Na+ during myocardial ischemia. Am J Physiol 1995; 268: HI740–HI748.

    Google Scholar 

  57. Bugge E, Ytrehus K. Inhibition of sodium-hydrogen exchange reduces infarct size in the isolated rat heart: a protection additive to ischaemic preconditioning. Cardiovasc Res 1995; 29: 269 – 274.

    PubMed  CAS  Google Scholar 

  58. Kaplan SH, Yang H, Gilliam DE, Shen J, Lemasters JJ, Cascio WE. Hypercapnic acidosis and dimethyl amiloride reduce reperfusion induced cell death in ischaemic ventricular myocardium. Cardiovasc Res 1995; 29: 231 – 238.

    PubMed  CAS  Google Scholar 

  59. Sack S. Mohri M, Schwarz ER, Arras M, Schaper J, Ballagi-Pordány G, et al. Effects of a new Na+/H+ antiporter inhibitor on postischemic reperfusion in pig heart. J Cardiovasc Pharmacol 1994; 23: 72 – 78.

    Article  PubMed  CAS  Google Scholar 

  60. Karmazyn M, Ray M, Haist JV, Comparative effects of Na+/H+ exchange inhibitors against cardiac injury produced by ischemia/reperfusion, hypoxia/reoxygenation, and the calcium paradox. J Cardiovasc Pharmacol 1993; 21: 172 – 178.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Avkiran, M. (1996). Sodium-hydrogen exchange in myocardial ischemia and reperfusion: A critical determinant of injury?. In: Karmazyn, M. (eds) Myocardial Ischemia: Mechanisms, Reperfusion, Protection. EXS, vol 76. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8988-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8988-9_18

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9857-7

  • Online ISBN: 978-3-0348-8988-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics