Skip to main content

Role of the sympathetic nervous system in the ischemic and reperfused heart

  • Chapter
Book cover Myocardial Ischemia: Mechanisms, Reperfusion, Protection

Part of the book series: EXS ((EXS,volume 76))

Abstract

Norepinephrine, that has been released from sympathetic nerve endings in response to myocardial ischemia, may have either a beneficial or a harmful effect on the ischemic heart. If the duration of ischemia is short, the release of norepinephrine may be favorable for the production of energy and for protection of the heart against ischemic damage. If the duration of ischemia is prolonged, there is a marked increase in number of both α1- and ß-adrenocep-tors located in the sarcolemmal membrane, as well as an excessive increase in release of norepinephrine. These events during the prolonged period of ischemia can produce an imbalance between oxygen supply and demand, which is harmful to the heart. The anti-ischemic effect of α1 and ß-adrenoceptor antagonists is not attributed merely to improvement of oxygen balance, but reduction of phospholipase activity or stabilization of membrane may also be important as an underlying mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ichihara K, Abiko Y. Inhibition of endo- and epicardial glycogenolysis by propranolol in ischemic hearts. Am J Physiol 1977; 232: H349 – 53.

    PubMed  CAS  Google Scholar 

  2. Ichihara K, Abiko Y. Crossover plot study of glycolytic intermediates in the ischemic canine heart. Jpn Heart J 1982; 23: 817 – 28.

    Article  PubMed  CAS  Google Scholar 

  3. Sakai K, Abiko Y. A neural factor involved in increase of the glycogen Phosphorylase activity after coronary ligation in both ischemic and nonischemic areas of the dog heart. Circ Res 1982; 51: 733 – 42.

    PubMed  CAS  Google Scholar 

  4. Schömig A. Catecholamines in myocardial ischemia. Systemic and cardiac release. Circulation 1990; 82 (11): 13 – 22.

    Google Scholar 

  5. Uchida Y, Murao S. Excitation of afferent cardiac sympathetic nerve fibers during coronary occlusion. Am J Physiol 1974; 226: 1094 – 9.

    PubMed  CAS  Google Scholar 

  6. Maisel AS, Motulsky HJ, Ziegler MG, Insel PA. Ischemia- and agonist-induced changes in α- and β-adrenergic receptor traffic in guinea pig hearts. Am J Physiol 1987; 253: H1159 – 66.

    PubMed  CAS  Google Scholar 

  7. Strasser RH, Krimmer J, Braun-Dullaeus R, Marquetant R, Kubier W. Dual sensitization of the adrenergic system in early myocardial ischemia: Independent regulation of the ß-adrenergic receptors and the adenylyl cyclase. J Mol Cell Cardiol 1990; 22: 1405 – 23.

    Article  PubMed  CAS  Google Scholar 

  8. Corr PB, Yamada KA, DaTorre SD. Modulation of α-adrenergic receptors and their intracellular coupling in the ischemic heart. Basic Res Cardiol 1990; 85 (1): 31 - 45.

    PubMed  Google Scholar 

  9. Maisel AS, Ransnäs LA, Insel PA. ß-Adrenergic receptors and the Gs protein in myocardial ischemia and injury. Basic Res Cardiol 1990; 85 (1): 47 – 56.

    PubMed  Google Scholar 

  10. Strasser RH, Marquetant R, K–bier W. Adrenergic receptors and sensitization of adenylyl cyclase in acute

    Google Scholar 

  11. Ihl-vahl R, Marquetant R, Bremerich J, Strasser RH. Regulation of β-adrenergic receptors in acute myocardial ischemia: Subtype-selective increase of mRNA specific for ß1-adrenergic receptors. J Mol Cell Cardiol 1995; 27: 437 – 52.

    Article  PubMed  CAS  Google Scholar 

  12. Corr PB, Shayman JA, Kramer JB, Kipnis RJ. Increased a-adrenergic receptors in ischemic cat myocardium: A potential mediator of electrophysiological derangements. J Clin Invest 1981; 67: 1232 – 6.

    Article  PubMed  CAS  Google Scholar 

  13. Allely MC, Brown CM, Kenny BA, Kilpatrick AT, Martin A, Spedding M. Modulation of α1-adrenoceptors in rat left ventricle by ischemia and acyl carnitines: Protection by ranolazine. J Cardiovasc Pharmacol 1993; 21: 869 – 73.

    Article  PubMed  CAS  Google Scholar 

  14. Jones CE, Beck LY, DuPont E, Barnes GE. Effects of coronary ligation on the chronically sympathectomized dog ventricle. Am J Physiol 1978; 235: H429 – 34.

    PubMed  CAS  Google Scholar 

  15. Humphrey SM, Gavin JB, Herdson PB. Catecholamine-depletion and the no-reflow phenomenon in anoxic and ischaemic rat hearts. J Mol Cell Cardiol 1982; 14: 151 – 61.

    Article  PubMed  CAS  Google Scholar 

  16. Abrahamsson T, Almgren O, Svensson L. Local noradrenaline release in acute myocar-ial ischemia: Influence of catecholamine synthesis inhibition and β-adrenoceptor blockade on ischemic injury. J Cardiovasc Pharmacol 1981; 3: 807 – 17.

    Article  PubMed  CAS  Google Scholar 

  17. Abiko Y, Ichihara K, Sakai K. Myocardial pH; A useful indicator for evaluation of antianginal drugs. TIPS 1984; 5: 513 – 7.

    CAS  Google Scholar 

  18. Ichihara K, Ichihara M, Abiko Y. Involvement of β-adrenergic receptors in decrease of myocardial pH during ischemia. J Pharmacol Exp Ther 1979; 209: 275 – 81.

    PubMed  CAS  Google Scholar 

  19. Abiko Y, Sakai K. Increase of myocardial pH by 1- and d-propranolol during ischemia of the heart in dogs. Eur J Pharmacol 1980; 64: 239 – 48.

    Article  PubMed  CAS  Google Scholar 

  20. Gevers W. Generation of protons by metabolic processes in heart cells. J Mol Cell Cardiol 1977; 9: 867 – 74.

    Article  PubMed  CAS  Google Scholar 

  21. Mirua M, Hashizume H, Abiko Y. Propranolol inhibits accumulation of non-esterified fatty acids in the ischemic dog heart. Eur J Pharmacol 1988; 152: 281 – 288.

    Article  Google Scholar 

  22. Hayase N, Chiba K, Ichihara K, Inagaki S, Abiko Y. Effect of nipradilol on myocardial energy metabolism in the dog ischaemic heart. J Pharm Pharmacol 1990; 42: 419 – 22.

    Article  PubMed  CAS  Google Scholar 

  23. Nakamura K, Ichihara K, Abiko Y. Effect of propranolol on accumulation of NEFA in the ischemic perfused rat heart. Eur J Pharmacol 1989; 160: 61 – 9.

    Article  PubMed  CAS  Google Scholar 

  24. Ichihara K, Saitoh Y, Abiko Y. Effect of carteolol, a new beta-adrenergic blocking agent, on myocardial metabolic response to coronary artery ligation in dogs. Japan J Pharmacol 1977; 27: 475 – 8.

    Article  CAS  Google Scholar 

  25. Izumi T, Sakai K, Abiko Y. Effect of sotalol on ischemic myocardial pH in the dog heart. Naunyn-Schmiedebergs Arch Pharmacol 1982; 318: 340 – 43.

    Article  PubMed  CAS  Google Scholar 

  26. Sakai K, Abiko Y. Attenuation by atenolol of myocardial acidosis during ischemia in dogs: Contribution of beta-1 adrenoceptors to myocardial acidosis. J Pharmacol Exp Ther 1985; 232: 810 – 6.

    PubMed  CAS  Google Scholar 

  27. Sashida H, Sakai K, Hiño T, Abiko Y. Effect of xamoterol, a β1-adrenoceptor partial agonist, on myocardial pH decreased by coronary occlusion in dogs. Pharmacology 1986; 33: 301 – 10.

    Article  PubMed  CAS  Google Scholar 

  28. Ichihara K, Abiko Y. Effect of nadolol, a β-adrenoceptor blocking agent, on myocardial metabolism in the dog ischaemic heart. J Pharm Pharmacol 1987; 39: 604 – 8.

    Article  PubMed  CAS  Google Scholar 

  29. Hiño T, Hayase N, Chiba K, Ichihara K, Abiko Y. Nipradilol, a ß-adrenoceptor antagonist having a vasodilatory action, attenuates myocardial acidosis induced by coronary artery occlusion in dogs. Methods Find Exp Clin Pharmacol 1989; 11: 373 – 8.

    PubMed  Google Scholar 

  30. Hiño T, Sakai K, Ichihara K, Abiko Y. Attenuation of ischaemia-induced regional myocardial acidosis by bevantolol, a β1-adrenoceptor antagonist, in dogs. Pharmacol Toxicol 1989; 64: 324 – 8.

    Article  PubMed  Google Scholar 

  31. Chiba K, Hayase N, Ichihara K. Effects of bunitrolol on ischemic myocardial energy metabolism in dogs. J Pharm Sci 1993; 82: 384 – 8.

    Article  PubMed  CAS  Google Scholar 

  32. Abiko Y, Gotho H, Yokoyama T, Abiko T, Hashizume H, Akiyama K. Bopindolol and its metabolite 18–502 attenuate regional myocardial acidosis during partial occlusion of the coronary artery in dogs. Arch Int Pharmacodyn Ther 1994; 327: 40 – 55.

    PubMed  CAS  Google Scholar 

  33. Hayase N, Chiba K, Abiko Y, Ichihara K. Effects of tilisolol on ischemic myocardial metabolism in dogs. Eur J Pharmacol 1994; 260: 183 – 90.

    Article  PubMed  CAS  Google Scholar 

  34. Barrett AM, Cullum VA. The biological properties of the optical isomers of propranolol and their effects on cardiac arrhythmias. Br J Pharmacol 1968; 34: 43 – 55.

    PubMed  CAS  Google Scholar 

  35. Matsumura N, Matsumura H, Abiko Y. Effect of lidocaine on the myocardial acidosis induced by coronary artery occlusion in dogs. J Pharmacol Exp Ther 1987; 242: 1114 – 9.

    PubMed  CAS  Google Scholar 

  36. Hoque ANE, Nasa Y, Abiko Y. Cardioprotective effect of d-propranolol in ischemic-reperfused isolated rat hearts. Eur J Pharmacol 1993; 236: 269 – 77.

    Article  PubMed  CAS  Google Scholar 

  37. Takeo S, Yamada H, Tanonaka K, Hayashi M, Sunagawa N. Possible involvement of membrane-stabilizing action in beneficial effect of β-adrenoceptor blocking agents on hypoxic and posthypoxic myocardium. J Pharmacol Exp Ther 1990; 254: 847 – 56.

    PubMed  CAS  Google Scholar 

  38. Richardt G, Lumpp U, Haass M, Schömig A. Propranolol inhibits nonexocytotic noradrenaline release in myocardial ischemia. Naunyn-Schmiedebergs Arch Pharmacol 1990; 341: 50 – 5.

    PubMed  CAS  Google Scholar 

  39. Yoshida R, Ichihara K, Abiko Y. Effects of bunazosin, a selective α1-adrenergic blocking agent, on myocardial energy metabolism in ischemic dog heart. Jpn J Pharmacol 1990; 53: 435 – 41.

    Article  PubMed  CAS  Google Scholar 

  40. Haneda T, Tanaka H, Abe M, Obata H, Onodera S. Effects of bunazosin, a selective alpha J-adrenoceptor blocker, on ischemic myocardium in perfused rat heart. Clin Ther 1992; 14: 230 – 5.

    PubMed  CAS  Google Scholar 

  41. Nayler WG, Gordon M, Stephens DJ, Sturrock WJ. The protective effect of prazosin on the ischaemic and reperfused myocardium. J Mol Cell Cardiol 1985; 17: 685 – 99.

    Article  PubMed  CAS  Google Scholar 

  42. Sheridan DJ, Penkoske PA, Sobel BE, Corr PB. Alpha adrenergic contributions to dysrhythmia during myocardial ischemia and reperfusion in cats. J Clin Invest 1980; 65: 161 – 71.

    Article  PubMed  CAS  Google Scholar 

  43. Slivka SR, Insel PA. α1-Adrenergic receptor-mediated phosphoinositide hydrolysis and prostaglandin E2 formation in Madin-Darby canine kidney cells: Possible parallel activation of phospholipase C and phospholipase A2. J Biol Chem 1987; 262: 4200 – 7.

    PubMed  CAS  Google Scholar 

  44. Hiraki Y, Saito H, Sugiyama S, Ozawa T. Effect of the α1-blocker bunazosin on reperfusion-induced mitochondrial dysfunction in canine hearts. Arzneimittel Förch Drug Res 1988; 38: 11 – 3.

    Google Scholar 

  45. Hayase N, Chiba K, Ichihara K. Effects of amosulalol, a combined α1- and β-adrenocep-tor-blocking agent, on ischemic myocardial energy metabolism in dogs. J Pharm Sci 1993; 82: 291 – 5.

    Article  PubMed  CAS  Google Scholar 

  46. Ciuffo AA, Ouyang P, Becker LC, Levin L, Weisfeldt ML. Reduction of sympathetic inotroic response after ischemia in dogs: Contributor to stunned myocardium. J Clin Invest 1985; 75: 1504 – 9.

    Article  PubMed  CAS  Google Scholar 

  47. Gutterman DD, Morgan DA, Miller FJ. Effect of brief myocardial ischemia on sympathetic coronary vasoconstriction. Circ Res 1992; 71: 960 – 9.

    PubMed  CAS  Google Scholar 

  48. Schulz R, Frehen D, Heusch G. No impairment of sympathetic neurotransmission in stunned myocardium. Basic Res Cardiol 1990; 85 (1): 267 – 80.

    PubMed  Google Scholar 

  49. Boli R. Oxygen-derived free radicals and postischemic myocardial dysfunction “stunned myocardium”. J Am Coll Cardiol 1988; 12: 239 – 49.

    Article  Google Scholar 

  50. Kusuoka H, Porterfield JK, Weisman HF, Weisfeldt ML, Marban E. Pathophysiology and pathogenesis of stunned myocardium: Depressed Ca2+ activation of contraction as a consequence of reperfusion-induced cellular calcium overload in ferret hearts. J Clin Invest 1987; 79: 950 – 61.

    Article  PubMed  CAS  Google Scholar 

  51. Toombs CF, Wiltse AL, Shebuski RJ. Ischemic preconditioning fails to limit infarct size in reserpinized rabbit myocardium: Implication of norepinephrine release in the preconditioning effect. Circulation 1993; 88: 2351 – 8.

    PubMed  CAS  Google Scholar 

  52. Banerjee A, Locke-Winter C, Rogers KB, Mitchell MB, Brew EC, Cairns CB et al. Preconditioning against myocardial dysfunction after ischemia and reperfusion by an a,-adrenergic mechanism. Circ Res 1993; 73: 656 – 70.

    PubMed  CAS  Google Scholar 

  53. Bankwala Z, Hale SL, Kloner RA. a-Adrenoceptor stimulation with exogenous norepinephrine or release of endogenous catecholamines mimics ischemic preconditioning. Circulation 1994; 90: 1023 – 8.

    PubMed  CAS  Google Scholar 

  54. Kitakaze M, Hori M, Morioka T, Minamino T, Takashima S, Sato H et al. Alpha1-adrenoceptor activation mediates the infarct size-limiting effect of ischemic preconditioning through augmentation of 5’-nucleotidase activity. J Clin Invest 1994; 93: 2197 – 205.

    Article  PubMed  CAS  Google Scholar 

  55. Auchampach JA, Gross GJ. Adenosine A, receptors, KATP channels, and ischemic preconditioning in dogs. Am J Physiol 1993; 264: HI327–36.

    Google Scholar 

  56. Iiura T, Iimura O. Infarct size limitation by preconditioning: Its phenomenological features and the key role of adenosine. Cardiovasc Res 1993; 27: 36 – 42.

    Article  Google Scholar 

  57. Kitakaze M, Hori M, Kamada T. Role of adenosine and its interaction with a-adrenocep-tor activity in ischaemic and reperfusion injury of the myocardium. Cradiovasc Res 1993; 27: 18 - 27.

    Article  CAS  Google Scholar 

  58. Speechly-Dick ME, Mocanu MM, Yellon DM. Protein kinase C: Its role in ischemic preconditioning in the rat. Circ Res 1994; 75: 586 - 90.

    PubMed  CAS  Google Scholar 

  59. Thornton JD, Daly JF, Cohen MV, Yang XM, Downey JM. Catecholamines can induce adenosine receptor-mediated protection of the myocardium but do not participate in ischemic preconditioning in the rabbit. Circ Res 1993; 73: 649 - 55.

    PubMed  CAS  Google Scholar 

  60. Vegh A, Szekeres L, Parratt J. Preconditioning of the ischaemic myocardium: Involvement of the L-arginine nitric oxide pathway. Br J Pharmacol 1992; 107: 648 - 52.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Hara, A., Abiko, Y. (1996). Role of the sympathetic nervous system in the ischemic and reperfused heart. In: Karmazyn, M. (eds) Myocardial Ischemia: Mechanisms, Reperfusion, Protection. EXS, vol 76. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8988-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8988-9_17

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9857-7

  • Online ISBN: 978-3-0348-8988-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics