Skip to main content

Role of eicosanoids in the ischemic and reperfused myocardium

  • Chapter
Myocardial Ischemia: Mechanisms, Reperfusion, Protection

Part of the book series: EXS ((EXS,volume 76))

Abstract

Eicosanoids represent a family of fatty acid derivatives which possess complex biological effects. The three major groups of products are synthesized from arachidonic acid via distinct enzyme complexes and include prostaglandins, leukotrienes and arachidonic acid oxidation products such as epoxides. While the exact sites of synthesis of eicosanoids still require to be determined, there is evidence that the heart has the ability to produce both cyclooxygenase and lipoxygenase derived products. In mammalian heart, activity of the third major pathway of arachidonic acid metabolism, the cytochrome P450-depen-dent monooxygenases, appears to be very low. Eicosanoids exert a myriad of actions on the cardiovascular system including the heart. For example, prostacyclin, produced by cyclooxygenase primarily in vascular endothelium, is generally considered to be a potent vasodilator. On the other hand, thromboxane A2, produced by the same enzyme primarily in platelets, exerts coronary constricting effects. The precise role of eicosanoids in the etiology of heart disease however, is still not fully understood. For example, in the ischemic and reperfused myocardium, both deleterious and beneficial effects of prostaglandins are proposed, a phenomenon which may be associated with the biphasic nature of the effects of these substances. The role of leukotrienes in myocardial ischemia and reperfusion is also complex although it is likely that a major function of these compounds is to provide a chemotactic signal for neutrophil recruitment in the ischemic zone. Initial studies with eicosatrienoic acid epoxides (epoxyeicosatrienoic acids; EETs) also reveal complex actions with respect to myocardial injury as well as modulation of intracellular calcium homeostasis. In this review we discuss the mechanisms and regulation of arachidonic acid metabolism particularly with respect to the heart and how alterations in the production of arachidonic acid metabolites can affect heart function in health and disease.

Author for correspondence

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dennis E A. Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem 1994; 269: 13057–13060.

    PubMed  CAS  Google Scholar 

  2. Watson JE, Karmazyn M. Concentration-dependent effects of protein kinase C-activating and -nonactivating phorbol esters on myocardial contractility, coronary resistance, energy metabolism, prostacyclin synthesis, and ultrastructure in isolated rat hearts. Circ Res 1991; 69: 1114–1131.

    PubMed  CAS  Google Scholar 

  3. Vane JR, Botting RM. New insights into the mode of action of anti-inflammatory drugs. Inflamm Res 1995; 44: 1–10.

    Article  PubMed  CAS  Google Scholar 

  4. Needleman P, Turk J, Jakschik BA, Morrison AR, Lefkowith JB. Arachidonic acid metabolism. Annu Rev Biochem 1986; 55: 69–102.

    Article  PubMed  CAS  Google Scholar 

  5. Capdevila JH, Falck JR, Estabrook RW. Cytochrome P450 and the arachidonate cascade. FASEB J 1992; 6: 731–736.

    PubMed  CAS  Google Scholar 

  6. Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts II LJ. A series of prostaglandin F2-like compounds are produced in vivoin humans by a noncyclooxygenase, free-radical catalyzed mechanism. Proc Natl Acad Sci USA 1990; 87: 9383–9387.

    Article  PubMed  CAS  Google Scholar 

  7. Morrow JD, Frei B, Longmire AW, Gaziano JM, Lynch SM, Shyr Y et al. Increase in circulating products of lipid peroxidation (F2 isoprostanes) in smokers: smoking as a cause of oxidative damage. New Engl J Med 1995; 332: 1198–1203.

    Article  PubMed  CAS  Google Scholar 

  8. Malle E, Leis HJ, Karadi I, Kostner GM. Lipoxygenases and hydroperoxy/hydroxyei-cosatetraenoic acid formation. Int J Biochem 1987; 19: 1013–1022.

    Article  PubMed  CAS  Google Scholar 

  9. Margalit A, Sofer Y, Grossman S, Reynaud D, Pace-Asciak C, Livne AA. Hepoxilin A3 is the endogenous lipid mediator opposing hypotonic swelling of intact human platelets. Proc Natl Acad Sci USA 1993; 90: 2589–2592.

    Article  PubMed  CAS  Google Scholar 

  10. Lindgren JA, Edenius C. Transcellular biosynthesis of leukotrienes and lipoxins via leukotriene A4 transfer. Trends Pharmacol Sci 1993; 14: 351–354.

    Article  PubMed  CAS  Google Scholar 

  11. McGiff JC. Cytochrome P450 metabolism of arachidonic acid. Annu Rev Pharmacol Toxicol 1991; 31: 339–369.

    Article  PubMed  CAS  Google Scholar 

  12. Knickle LC, Bend JR. Bioactivation of arachidonic acid by the cytochrome P450 monooxygenases of guinea pig lung: the orthologue of cytochrome P450 2B4 is solely responsible for the formation of epoxyeicosatrienoic acids. Mol Pharmacol 1994; 45: 1273–1280.

    PubMed  CAS  Google Scholar 

  13. Dieter P. Arachidonic acid and eicosanoid release. J Immun Meth 1994; 174: 223–229.

    Article  CAS  Google Scholar 

  14. Overby LH, Nishio S, Weir A, Carver GT, Plopper CG, Philpot RM. Distribution of cytochrome P450 1A1 and NADPH-cytochrome P450 reductase in lungs of rabbits treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin: ultrastructural immunolocalization and in situhybridization. Mol Pharmacol 1992; 41: 1039–1046.

    PubMed  CAS  Google Scholar 

  15. McCallum GP, Horton JE, Falkner KC, Bend JR. Microsomal cytochrome P450 1A1 dependent monooxygenase activity in guinea pig heart: induction, inhibition, and increased activity by addition of exogenous NADPH-cytochrome P450 reductase. Can J Physiol Pharmacol 1993; 71: 151–156.

    Article  PubMed  CAS  Google Scholar 

  16. Carroll MA, Garcia MP, Falck JR, McGiff JC. Cyclooxygenase dependency of the renovascular actions of cytochrome P450-derived arachidonate metabolites. J Pharmacol Exp Ther 1992; 260: 104–109.

    PubMed  CAS  Google Scholar 

  17. Homma T, Zhang JY, Shimizu T, Prakash C, Blair IA, Harris RC. Cyclooxygenasederived metabolites of 8,9-epoxyeicosatrienoic acid are potent mitogens for cultured rat glomerular mesangial cells. Biochem Biophys Res Comm 1993; 191: 282–288.

    Article  PubMed  CAS  Google Scholar 

  18. Karara A, Wei S, Spady D, Swift L, Capdevila JH, Falck JR. Arachidonic acid epoxygenase: structural characterization and quantification of epoxyeicosatrienoates in plasma. Biochem Biophys Res Comm 1992; 182: 1320–1325.

    Article  PubMed  CAS  Google Scholar 

  19. Toto R, Siddhanta A, Manna S, Pramanik B, Falck JR, Capdevila J. Arachidonic acid epoxygenase: detection of epoxyeicosatrienoic acids in human urine. Biochim Biophys Acta 1987; 919: 132–139.

    PubMed  CAS  Google Scholar 

  20. De Deckere EAM, Nugteren DH, Ten Hoor F. Prostacyclin is the major eicosanoid released from the isolated, perfused rabbit and rat heart. Nature 1977; 268: 160–163.

    Article  PubMed  Google Scholar 

  21. Needleman P, Bronson SD, Wyche A, Sivakoff M, Nicolaou KC. Cardiac and renal prostaglandin I2: biosynthesis and biological effects in isolated perfused rabbit tissues. J Clin Invest 1978; 61: 839–849.

    Article  PubMed  CAS  Google Scholar 

  22. Hsueh W, Needleman P. Sites of lipase activation and prostaglandin synthesis in isolated, perfused rabbit hearts and hydronephrotic kidneys. Prostaglandins 1978; 16: 661–681.

    Article  CAS  Google Scholar 

  23. Karmazyn M, Dhalla NS. Physiological and pathophysiological aspects of cardiac prostaglandins. Can J Physiol Pharmacol 1983; 61: 1207–1225.

    Article  PubMed  CAS  Google Scholar 

  24. Bolton HS, Chanderbhan R, Bryant RW, Bailey JM, Weglicki WB, Vahouny GV. Prostaglandin synthesis by adult heart myocytes. J Mol Cell Cardiol 1980; 11: 1287–1298.

    Article  Google Scholar 

  25. Oudot F, Grynberg A, Sergiel JP. Eicosanoid synthesis in cardiomyocytes: influence of hypoxia, reoxygenation, and polyunsaturated fatty acids. Am J Physiol 1995; 268: H308–H315.

    PubMed  CAS  Google Scholar 

  26. Moneada S, Needleman P, Bunting S, Vane JR. Prostaglandin endoperoxide and thromboxane generating systems and their selective inhibition. Prostaglandins 1976; 12: 323–335.

    Article  Google Scholar 

  27. Karmazyn M. Contribution of prostaglandins to reperfusion-induced ventricular failure in isolated rat heart. Am J Physiol 1986; 251: H133–H140.

    PubMed  CAS  Google Scholar 

  28. Otani H, Engelman RM, Rousou JA, Breyer RH, Das DK. Enhanced prostaglandin synthesis due to phospholipid breakdown in ischemic-reperfused myocardium. J Mol Cell Cardiol 1986; 18: 953–961.

    Article  PubMed  CAS  Google Scholar 

  29. Kawaguchi H, Shoki M, Iizuka K, Sano H, Sakata Y, Yasuda H. Phospholipid metabolism and prostacyclin synthesis in hypoxic myocytes. Biochem Biophys Acta 1991; 1094: 161–167.

    Article  PubMed  CAS  Google Scholar 

  30. Fu FJ, Masferrer JL, Seibert K, Raz A, Needleman P. The induction and suppression of prostaglandin H2 synthase (cyclooxygenase) in human monocytes. J Biol Chem 1990; 265: 16737–16740.

    PubMed  CAS  Google Scholar 

  31. Masferrer JL, Zweifel BS, Seibert S, Needleman P. Selective regulation of cellular cyclooxygenase by dexamethasone and endotoxin in mice. J Clin Invest 1990; 86: 1375–1379.

    Article  PubMed  CAS  Google Scholar 

  32. Xie W, Chipman JG, Robertson DL, Erikson RL, Simmons DL. Expression of a mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proc Natl Acad Sci USA 1991; 88: 2692 - 2696.

    Article  PubMed  CAS  Google Scholar 

  33. Pritchard Jr KA, O’Banion MK, Miano MJ, Vlasic N, Bhatia UG, Young DA et al. Induction of cyclooxygenase-2 in rat smooth muscle cells in vitroand in vivo. J Biol Chem 1994; 269: 8504–8509.

    PubMed  CAS  Google Scholar 

  34. Linbon L, Hedqvist P, Dahler S-E, Lindgren JA, Arfors KE. Leukotriene B4 induces extravasation and migration of polymorphonuclear leukocytes in vivo. Acta Physiol Scand 1982; 116: 105–108.

    Article  Google Scholar 

  35. Gimbrone MA, Brock AF, Schaffer AI. Leukotriene B4 stimulates polymorphonuclear leukocyte adhesion to cultured vascular endothelial cells. J Clin Invest 1984; 74: 1552–1555.

    Article  PubMed  CAS  Google Scholar 

  36. Serhan CN, Radin A, Smolen JE, Korchak H, Samuelsson B, Weissman G. Leukotriene B4 is a complete secretagogue in human neutrophils: a kinetic analysis. Biochem Biophys Res Commun 1982; 107: 1006–1012.

    Article  PubMed  CAS  Google Scholar 

  37. McGee JE, Fitzpatrick FA. Erythrocyte-neutrophil interaction: formation of leukotriene B4 by transcellular biosynthesis. Proc Natl Acad Sci USA 1986; 83: 1349–1353.

    Article  PubMed  CAS  Google Scholar 

  38. Feinmark SJ, Cannon PJ. Endothelial cell leukotriene C4 synthesis results from intracellular transfer of leukotriene A4 synthesized by polymorphonuclear leukocytes. J Biol Chem 1986; 261: 16466–16472.

    PubMed  CAS  Google Scholar 

  39. Feinmark SJ, Cannon PJ. Vascular smooth muscle cell leukotriene C4 synthesis: requirement for transcellular leukotriene A4 metabolism. Biochim Biophys Acta 1987; 922: 125–135.

    PubMed  CAS  Google Scholar 

  40. Maclouf JA, Murphy RC, Henson P. Transcellular sulfidopeptide leukotriene biosynthetic capacity of vascular cells. Blood 1989; 74: 703 - 707.

    PubMed  CAS  Google Scholar 

  41. Sala A, Rossoni G, Buccellati C, Berti F, Folco G, Maclouf J. Formation of sulphidopep-tide-leukotrienes by cell-cell interaction causes vasoconstriction in isolated, cell-perfused heart of rabbit. Br J. Pharmacol 1993; 110: 1206–1212.

    PubMed  CAS  Google Scholar 

  42. Karmazyn M., Moffat MP. Calcium-ionophore stimulated release of leukotriene C4-like immunoreactive material from cardiac tissue. J Mol Cell Cardiol 1984; 16: 1071–1073.

    Article  PubMed  CAS  Google Scholar 

  43. Karmazyn M. Calcium-paradox evoked release of prostacyclin and immunoreactive leukotriene C4 from rat and guinea-pig hearts. Evidence that endogenous prostaglandins inhibit leukotriene biosynthesis. J Mol Cell Cardiol 1987; 19: 221–230.

    Article  PubMed  CAS  Google Scholar 

  44. Barst S, Mullane KM. The release of a leukotriene D4-like substance following myocar¬dial infarction in rabbits. Eur J Pharmacol 1985; 114: 383–387.

    Article  PubMed  CAS  Google Scholar 

  45. Porter TD, Coon MJ. Cytochrome P-450: Multiplicity of isoforms, substrates, and catalytic and regulatory mechanisms. J Biol Chem 1991; 266: 13469–13472.

    PubMed  CAS  Google Scholar 

  46. Nelson DR, Kamataki T, Waxman DJ, Guengerich FP, Estabrook RW, Feyereisen R et al. The P450 superfamily — update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol 1993; 12: 1–51.

    Article  PubMed  CAS  Google Scholar 

  47. Guengerich PF, Mason P. Immunological comparison of hepatic and extrahepatic cytochrome P-450. Mol Pharmacol 1979; 15: 154–164.

    PubMed  CAS  Google Scholar 

  48. Abraham N, Pinto A, Levere R, Mullane K. Identification of heme oxgenase and cytochrome P-450 in the rabbit heart. J Mol Cell Cardiol 1986; 19: 73–81.

    Article  Google Scholar 

  49. Stegeman JJ, Smolowitz RM, Hahn ME. Immunohistochemical localization of environmentally induced cytochrome P4501A1 in multiple organs of the marine teleost Stenotomus chrysops(scup). Toxicol Appi Pharmacol 1991; 110: 486–504.

    Article  CAS  Google Scholar 

  50. Stegman JJ, Woodin BR, Klotz AV, Wolke RE. Orme-Johnson NR. Cytochrome P-450 and monooxygenase activity in cardiac microsomes from the fish Stenotomus chrysops. Mol Pharmacol 1982; 21: 517–526.

    Google Scholar 

  51. Stegemann JJ, Miller MR, Hinton DE. Cytochrome P4501A1 induction and localization in endothelium of vertebrate (teleost) heart. Mol Pharmacol 1989; 36: 723–729.

    Google Scholar 

  52. Serabjit-Singh CJ, Bend JR, Philpot RM. Cytochrome P-450 monooxygenase system: localization in smooth muscle of rabbit aorta. Mol Pharmacol 1985; 28: 72–79.

    PubMed  CAS  Google Scholar 

  53. Domin BA, Philpot RM. The effect of substrate on the expression of activity catalyzed by cytochrome P-450: metabolism mediated by rabbit isozyme 6 in pulmonary microsomal and reconstituted systems. Arch Biochem Biophys 1986; 246: 128–142.

    Article  PubMed  CAS  Google Scholar 

  54. Knickle LC, Webb CD, House AA, Bend JR. Mechanism-based inactivation of cy¬tochrome P450-1A1 by N-arlkyl-l-aminobenzotriazoles in guinea pig kidney in vivoand in vitro: Minimal effects on metabolism of arachidonic acid by renal P450-dependent monooxygenase. J Pharmacol Exp Ther 1993; 267: 758–764.

    PubMed  CAS  Google Scholar 

  55. Rosolowsky M, Falck JR, Willerson JT, Campbell WB. Synthesis of lipoxygenase and epoxygenase products of arachidonic acid by normal and stenosed canine coronary arteries. Circ Res 1990; 66: 608–621.

    PubMed  CAS  Google Scholar 

  56. McCallum GP, Bend JR. Alkylhydroperoxide-dependent oxidation of arachidonic acid in guinea pig pulmonary, cardiac and hepatic microsomes. Proceedings 10th International Symposium on Microsomes & Drugs Oxidations, Univeristy of Toronto. 1994, p. 523.

    Google Scholar 

  57. Karmazyn M. Synthesis and relevance of cardiac eicoanoids with particular emphasis on ischemia and reperfusion. Can J Physiol Pharmacol 1989; 67: 912–921.

    Article  PubMed  CAS  Google Scholar 

  58. Karmazyn M. Ischemic and reperfusion injury in the heart. Cellular mechanisms and pharacological interventions. Can J Physiol Pharmacol 1991; 69: 719–730.

    Article  PubMed  CAS  Google Scholar 

  59. Moffat MP. Concentration-dependent effects of prostacyclin on the response of the isolated guinea pig heart to ischemia and reperfusion: Possible involvement of the slow inward current. J Pharmacol Exp Ther 1987; 242: 292–299.

    Google Scholar 

  60. Karmazyn M, Neely JR. Inhibition of post-ischemic ventricular recovery by low concentrations of prostacyclin in isolated working rat hearts: Dependency on concentration, ischemia duration, calcium and relationship to myocardial energy metabolism. J Mol Cell Cardiol 1989; 21: 335–346.

    Article  PubMed  CAS  Google Scholar 

  61. Karmazyn M, Tani M, Neely JR. Effect of prostaglandins I2 (prostacyclin) and F2α on function, energy metabolism, and calcium uptake in ischaemic/reperfused hearts. Cardiovasc Res 1993; 27: 396–402.

    Article  PubMed  CAS  Google Scholar 

  62. Karmazyn M. A direct protective effect of sulphinyrazone on ischaemic and reperfused rat hearts. Br J Pharmacol 1984; 83: 221–226.

    PubMed  CAS  Google Scholar 

  63. Moffat MP, Ferrier GR, Karmazyn M. A direct role of endogenous prostaglandins in reperfusion-induced cardiac arrhythmias. Can J Physiol Pharmacol 1989; 67: 772–779.

    Article  PubMed  CAS  Google Scholar 

  64. Pieper GM, Gross GJ. Diabetes alters post-ischemic response to a prostacyclin mimetic. Am J Physiol 1989; 256: H1353–H1360.

    PubMed  CAS  Google Scholar 

  65. Vandelplassche G, Hermans C, Somers Y, Van de Werf F, de Clerck F. Combined thromboxane A2 synthase inhibition and prostaglandin endoperoxide receptor antagonism limits infarct size after mechanical coronary occlusion and reperfusion at doses enhancing coronary thrombolysis by streptokinase. J Am Coll Cardiol 1993; 21: 1269–1279.

    Article  Google Scholar 

  66. Byrne JG, Appleyard RF, Sun S-C, Couper GS, Sloane JA, Laurence RG et al. Cardiac-derived thromboxane A2. An initiating mediator of reperfusion injury? J Thorac Cardiovasc Surg 1993; 105: 689–693.

    PubMed  CAS  Google Scholar 

  67. Farber NE, Pieper GM, Gross GJ. Lack of involvement of thromboxane A2 in post ischemic recovery of stunned canine myocardium. Circulation 1988; 78: 450–461.

    Article  PubMed  CAS  Google Scholar 

  68. Mullane KM, Fornabaio D. Thromboxane synthetase inhibitors reduce infarct size by a platelet-dependent, aspirin-sensitive mechanism. Circ Res 1988; 62: 668–678.

    PubMed  CAS  Google Scholar 

  69. Seth SD, Maulik M, Manchanda SC, Maulik SK. Role of aspirin in modulating myocardial ischemic reperfusion injury. Agents Actions 1995; 41: 151–155.

    Article  Google Scholar 

  70. Han S-Z, Haraki H, Ouchi Y, Akishita M, Orimo H. 17β-Estradiol inhibits Ca2+ influx and Ca2+ release induced by thromboxane A2 in porcine coronary artery. Circulation 1995; 91: 2619–2626.

    PubMed  CAS  Google Scholar 

  71. Hattori Y, Levi R. Negative inotropic effect of leukotrienes: Leukotrienes C4 and D4 inhibit calcium-dependent contractile responses in potassium-depolarized guinea-pig myocardium. J Pharmacol Exp Ther 1984; 230: 646–651.

    PubMed  CAS  Google Scholar 

  72. Letts LG, Piper PJ. The actions of leukotrienes C4 and D4 on guinea-pig isolated hearts. Br J Pharmacol 1982; 76: 169–176.

    PubMed  CAS  Google Scholar 

  73. Karmazyn M, Moffat MP. Positive inotropic effects of low concentrations of leukotrienes C4 and D4 in rat heart. Am J Physiol 1990; 259: H1239–H1246.

    PubMed  CAS  Google Scholar 

  74. Mullane KM, Hatala MA, Kraemer R, Sessa W, Westlin W. Myocardial salvage induced by REV-5901: An inhibitor and antagonist of the leukotrienes. J Cardiovasc Pharmacol 1987; 10: 398–406.

    Article  PubMed  CAS  Google Scholar 

  75. Bednar M, Smith B, Pinto A, Mullane KM. Nafazatrom-induced salvage of ischemic myocardium in anesthetized dogs is mediated through inhibition of neutrophil function. Circ Res 1985; 57: 131–141.

    PubMed  CAS  Google Scholar 

  76. O’Neill PG, Charlet ML, Kim H-S, Pocius J, Michael LH, Hartley CJ et al. Lipoxygenase inhibitor nafazatrom fails to attenuate postischaemic ventricular dysfunction. Cardiovasc Res 1987; 21: 755–760.

    Article  PubMed  Google Scholar 

  77. Maxwell MP, Marston C, Hadley MR, Salmon JA, Garland LG. Selective 5-lipoxygenase inhibitor BW A4C does not influence progression of tissue injury in a canine model of regional myocardial ischaemia and reperfusion. J Cardiovasc Pharmacol 1991; 17: 539–545.

    Article  PubMed  CAS  Google Scholar 

  78. Moffat MP, Ward CA, Bend JR, Mock T, Farhangkhoee P, Karmazyn M. Effects of epoxyeicosatrienoic acids on isolated hearts and ventricular myocytes. Am J Physiol 1993; 264: H1154–1160.

    PubMed  CAS  Google Scholar 

  79. Braquet P, Garay RP, Frolich JC, Nicosia S (Editors). Prostaglandins and Membrane Ion Transport. 1985, Raven Press. New York.

    Google Scholar 

  80. Karmazyn M, Tuana BS, Dhalla NS. Effect of prostaglandins on rat heart sarcolemmal ATPases. Can J Physiol Pharmacol 1981; 59: 1122–1127.

    Article  PubMed  CAS  Google Scholar 

  81. Kurachi Y, Ito H, Sugimoto T, Shimizu T, Miki I, Ui M. Arachidonic acid metabolites as intracellular modulators of the G protein-gated cardiac K+ channel. Nature 1989; 337: 555–557.

    Article  PubMed  CAS  Google Scholar 

  82. Smith WL. The eicosanoids and their biochemical mechanisms of action. Biochem J 1989; 259: 315 - 324.

    PubMed  CAS  Google Scholar 

  83. Mitchell MD, Trautman MS. Molecular mechanisms regulating prostaglandin action. Mol Cell Endocrinol 1993; 93: C7–C10.

    Article  PubMed  CAS  Google Scholar 

  84. Crooke ST, Mattern M, Sarau HM, Winker JD, Balcarek J, Wong A, Bennett CF. The signal transduction system of the leukotriene D4 receptor. Trends Pharmacol Sci 1989; 10: 103–107.

    Article  PubMed  CAS  Google Scholar 

  85. Karmazyn M. A role for prostaglandins in reperfusion-induced myocardial injury. Adv Myocardiol 1985; 6: 429–436.

    PubMed  CAS  Google Scholar 

  86. Karmazyn M. Prostaglandins stimulate calcium-linked changes in heart mitochondrial respiration. Am J Physiol 1986; 251: H141–H147.

    PubMed  CAS  Google Scholar 

  87. Karmazyn M, Neely JR. Evidence for a direct protective effect of aspirin on the ischemic and reperfused heart. Circulation 1988; 78: 11–16.

    Google Scholar 

  88. Seth SD, Maulik M, Manchanda SC, Maulik SK. Role of aspirin in modulating myocardial ischemic reperfusion injury. Agents/Actions 1994; 41: 151–155.

    CAS  Google Scholar 

  89. Alhaddad IA, Tkaczevski L, Siddiqui F, Mir R, Brown Jr E J. Aspirin enhances the benefits of late reperfusion in infarct shape. Circulation 1995; 91: 2819–2823.

    PubMed  CAS  Google Scholar 

  90. Fuster V, Dyken ML, Vokonas PS, Hennekens C. Aspirin as a therapeutic agent in cardiovascular disease. Circulation 1993; 87: 659–675.

    PubMed  CAS  Google Scholar 

  91. Vegh A, Szekeres L, Parratt JR. Protective effects of preconditioning of the ischemic myocardium involve cyclo-oxygenase products. Cardiovasc Res 1990; 24: 1020–1023.

    Article  PubMed  CAS  Google Scholar 

  92. Li Y, Kloner RA. Cardioprotective effects of ischaemic preconditioning are not mediated by prostanoids. Cardiovasc Res 1992; 26: 226–231.

    Article  PubMed  CAS  Google Scholar 

  93. Murphy E, Glasgow W, Fralix T, Steenbergen C. Role of lipoxygenase metabolites in ischemic proconditioning. Circ Res 1995; 76: 457–467.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Bend, J.R., Karmazyn, M. (1996). Role of eicosanoids in the ischemic and reperfused myocardium. In: Karmazyn, M. (eds) Myocardial Ischemia: Mechanisms, Reperfusion, Protection. EXS, vol 76. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8988-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8988-9_15

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9857-7

  • Online ISBN: 978-3-0348-8988-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics