Skip to main content

Bioenergetics, ischemic contracture and reperfusion injury

  • Chapter
Myocardial Ischemia: Mechanisms, Reperfusion, Protection

Part of the book series: EXS ((EXS,volume 76))

Summary

The mammalian heart is normally well oxygenated and anaerobic glycolysis is extremely rare except for the production of extra ATP during extreme exercise like a marathon race. Anaerobic glycolysis plays a role when there is a serious impairment in coronary blood flow such as during heart attack and open heart surgery. The control of glycolysis in ischemic myocardial tissue appears to be extremely complex. During aerobic glycolysis, phosphofructokinase is the most important regulatory enzyme that controls the energy requirements of the cell. Under anaerobic conditions, however, glyceraldehyde-3-phos-phate dehydrogenase becomes the key enzyme because it responds promptly to any changes in the essential supply of co-factors for oxidation. The conversion of pyruvate to acetyl CoA (aerobic metabolism) involves a series of chain reactions primarily catalyzed by pyruvate dehydrogenase complex which is situated at the cross roads between both aerobic and anaerobic glycolysis. It is important to remember that substrate utilization is carefully controlled by substrate availability. During aerobic metabolism, control mechanisms using fatty acids, lactate and glucose as energy substrates regulate the rate of ATP production according to energy demand. This precise mechanism is upset during ischemia and post-is-chemic reperfusion for reasons discussed in this review. The demand for ATP can no longer be met by its supply because of severely reduced anaerobic glycolysis and significantly inhibited ß-oxidation of fatty acids. The impairment of bioenergetics is discussed in the context of several diseases such as cardiomyopathy, heart failure, diabetes, arrhythmias, cardiac surgery, heart-lung transplantation, and also in aging and oxidative stress. The regulation of energy metabolism in preconditioned heart is also discussed. Finally, methods used to preserve energy in ischemic myocardium are summarized and quantitation of the high-energy phosphates is discussed. This review challenges scientists to discover drugs which will stimulate energy supply during myocardial ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Neely JR, Liedtke AJ, Whitmer JT, Rovetto MJ. Relationship between coronary flow and adenosine triphosphate production from glycolysis and oxidative metabolism. In: PR Roy and P Harris, editors: Recent advances in studies of cardiac structure and metabolism. The sarcoplasm. Baltimore, MD: University Park Press, 1975; 8: 301–321.

    Google Scholar 

  2. Liedtke AJ. Alterations of carbohydrate and lipid metabolism in the acutely ischemic heart. Prog Cardiovasc Res 1981; 23: 321 – 335.

    Article  CAS  Google Scholar 

  3. Simonsen S, Kjekshus JK. The effect of free fatty acids on myocardial oxygen consumption during atrial pacing and catecholamine infusion in man. Circulation 1978; 58: 484 – 490.

    PubMed  CAS  Google Scholar 

  4. Humphrey SM, Thomson RW, Gavin JB. The effect of an isovolumic left ventricle on the coronary vascular competence during reflow after global ischemia in the rat heart. Circ Res 1981; 49: 784 – 791.

    PubMed  CAS  Google Scholar 

  5. Koretsune Y, Marban E. Mechanism of ischemic contracture in ferrer hearts: relative roles of [Ca2+] elevation and ATP depletion. Am J Physiol 1990; 258: H9 – H16.

    PubMed  CAS  Google Scholar 

  6. Vanoverschelde JLJ, Janier MF, Bergmann SR. The relative importance of myocardial energy metabolism compared with ischemic contracture in the determination of ischemic injury in isolated perfused rabbit hearts. Circ Res 1994; 74: 817 – 828.

    PubMed  CAS  Google Scholar 

  7. Opie LH. Substrate and energy metabolism of the heart. In: N Sperelakis, editor: Function of the heart in normal and pathological states. New York, NY: Martinus Nijhoff, 1984; 301 – 315.

    Google Scholar 

  8. Pine MB, Kahne D, Jaster B, Apstein CS, Thorp K, Abelmann WH. Sodium permeability and myocardial resistance to cell swelling during metabolic blockade. Am J Physiol 1980; 239: H31 - H39.

    PubMed  CAS  Google Scholar 

  9. Ferrari R, Pedersini P, Bongrazio M, Gaia G, Bernocchi P, Di Lisa F, Visioli O. Mitochondrial energy production and cation control in myocardial ischemia and reperfusion. Basic Res Cardiol 1993; 88: 495 – 512.

    Article  PubMed  CAS  Google Scholar 

  10. Tan HL, Mazon P, Verberne HJ, Sleeswijk ME, Coronel R, Opthof T, Janse MJ. Ischaemic preconditioning delays ischemia induced cellular electrical uncoupling in rabbit myocardium by activation of ATP sensitive potassium channels. Cardiovasc Res 1993; 27: 644 – 651.

    Article  PubMed  CAS  Google Scholar 

  11. Snoeckx LHEH, van der Vusse GJ, Coumans WA, Willemsen PHM, Reneman RS. Differences in ischemia tolerance between hypertrophied hearts of adult and aged spontaneously hypertensive rats. Cardiovasc Res 1993; 27: 874 – 881.

    Article  PubMed  CAS  Google Scholar 

  12. Bowman R. Effects of diabetes, fatty acids, and ketone bodies on tricarboxylic acid cycle metabolisms in perfused rat heart. J Biol Chem 1966; 241: 3041 – 3048.

    PubMed  CAS  Google Scholar 

  13. Billman GE. Role of ATP sensitive potassium channel in extracellular potassium accumulation and cardiac arrhythmias during myocardial ischaemia. Cardiovasc Res 1994; 28: 762 – 769.

    Article  PubMed  CAS  Google Scholar 

  14. Flameng W, Dyszkiewics W, Minter J. Energy state of the myocardium during long-term cold storage and subsequent reperfusion. Eur J Cardiothorac Surg 1988; 2: 244 – 255.

    Article  PubMed  CAS  Google Scholar 

  15. Carteaux J-P, Merter P-M, Pinelli G, Escanye J-M, Walker P, Brunotte F, Jaboin Y, Robert J, Villemot J-P. Left ventricular contractility after hypothermic preservation: predictive value of phosphorus 31-nuclear magnetic resonance spectroscopy. J Heart Lung Transplant 1994; 13: 661 – 668.

    PubMed  CAS  Google Scholar 

  16. Smolenski RT, Seymour A-M, Yacoub MH. Dynamics of energy metabolism in the transplanted human heart during reperfusion. J Thorac Cardiovasc Surg 1994; 108: 938–945, 1994.

    Google Scholar 

  17. McGowan FX, Lee FA, Chen V, Downing SE. Oxidative metabolism and mechanical function in reperfused neonatal pig heart. J Mol Cell Cardiol 1992; 24: 831 – 840.

    Article  PubMed  CAS  Google Scholar 

  18. Weidner PW, Myers JL, Miller CA, Arenas JD, Waldhausen JA. Improved recovery of immature myocardium with L-glutamate blood cardioplegia. Ann Thorac Surg 1993; 55: 102 – 105.

    Article  Google Scholar 

  19. Grosso MA, Banerjee A, St Cyr JA, Rogers KB, Brown JM, Clarke DA, Cambell DN, Harken AH. Cardiac 5′-nucleotidase activity increases with age and inversely relates to recovery from ischemia. Surgery 1992; 103: 206 – 212.

    CAS  Google Scholar 

  20. Constantopoulos G, Barranger JA. Nonenzymatic decarboxylation of pyruvate. Anal Biochem 1984; 139: 353 - 358.

    Article  PubMed  CAS  Google Scholar 

  21. Das DK, Engelman RM. Mechanisms of free radical generation in ischemic and reperfused myocardium. In: DK Das and WB Essman, editors: Oxygen Radicals: Systemic Events and Disease Processes. Basel, Karger 1989.

    Google Scholar 

  22. Deboer LWV, Bekx PA, Han L, Steinke L. Pyruvate enhances recovery of rat hearts after ischemia and reperfusion by preventing free radical generation. Am J Physiol 1993; 265: H1571 – H1576.

    PubMed  CAS  Google Scholar 

  23. Rousou J, Engelman RM, Anisimowicz L, Lemeshow S, Dobbs WA, Breyer RH, Das DK. Metabolie enhancement of myocardial preservation during cardiopletic arrest. J Thorac Cardiovasc Surg 1986; 91: 270 – 277.

    PubMed  CAS  Google Scholar 

  24. Engelman RM, Rousou JA, Flack JE, Iyengar J, Kimura Y, Das DK. Reduction of infarct size by systemic amino acid supplementation during reperfusion. J Thorac Cardiovasc Surg 1991; 101: 855 – 859.

    PubMed  CAS  Google Scholar 

  25. Lasley RD, Mentzer RM. Adenosine increases lactate release and delays onset of contracture during global low flow ischemia. Cardiovasc Res 1993; 27: 96 – 101.

    Article  PubMed  CAS  Google Scholar 

  26. Sandhu GS, Burrier AC, Janero DR. Adenosine deaminase inhibitors attenuate ischemic injury and preserve energy balance in isolated guinea pig heart. Am J Physiol 1993; 265: HI 249–1256.

    Google Scholar 

  27. Jennings RB, Reimer KA. Lethal myocardial ischemic injury. Am J Pathol 1981; 102: 241 – 255.

    PubMed  CAS  Google Scholar 

  28. Nayler WG, Yepez CE, Fassold E, Ferrari F. Prolonged protective effect of propranolol on hypoxic heart muscle. Am J Cardiol 1978; 42: 217 – 225.

    Article  PubMed  CAS  Google Scholar 

  29. Fabiato A. Calcium-induced release of calcium from the sarcoplasmic reticulum. J Gen Physiol 1985; 85: 189 – 195.

    Article  PubMed  CAS  Google Scholar 

  30. Jennings RB, Reimer KA, Steenbergen C. Effect of inhibition of the mitochondrial ATPase on net myocardial ATP in total ischemia. J Mol Cell Cardiol 1991; 23: 1383 – 1395.

    Article  PubMed  CAS  Google Scholar 

  31. Peuhkurinen KJ, Takala TES, Nuutinen EM, Hassinen IE. Tricarboxylic acid cycle metabolites during ischemia in isolated perfused rat heart. Am J Physiol 1983; 244: H281–HH288.

    Google Scholar 

  32. de Groot MJM, van der Vusse GJ. The effects of exogenous lactate and pyruvate on the recovery of coronary flow in the rat heart after ischemia. Cardiovasc Res 1993; 27: 1088 – 1093.

    Article  PubMed  Google Scholar 

  33. Weiss RG, Gloth R, Kalil-Filho GR, Chacko VP, Stern MD, Gerstenblith G. Indexing tricarboxylic acid cycle flux in intact hearts by carbon-13 nuclear magnetic resonance. Circ Res 1992; 70: 392 – 408.

    PubMed  CAS  Google Scholar 

  34. Hayase N, Chiba K, Ichihara K. Effects of amosulalol, a combined α1- and ß-adrenoeep-tor-blocking agent, on isochemic myocardial metabolism in dogs. J Pharm Sci 1993; 82: 291 – 295.

    Article  PubMed  CAS  Google Scholar 

  35. Ferari R, Cucchini F, Dilisa F, Raddina R, Bolognesi R, Visioli O. The effect of L−carnitine on myocardial metabolism of patients with coronary artery disease. Clin Trials J 1984; 21: 40 – 59.

    Google Scholar 

  36. Datta S, Das DK, Engelman RM, Otani H, Rousou JA, Breyer RH, Klar J. Enhanced myocardial preservation by nicotinic acid, an antilipolytic compound: mechanism of action. Basic Res Cardiol 1989; 84: 63 – 76.

    Article  PubMed  CAS  Google Scholar 

  37. Whitlow PL, Rogers WJ, Smith LR, McDaniel HG, Papapietro SE, et al. Enhancement of left ventricular function by glucose-insulin-potassium infusion in acute myocardial infarction. Am J Cardiol 1982; 49: 811 – 820.

    Article  PubMed  CAS  Google Scholar 

  38. Das DK, Engelman RM, Kimura Y. Molecular adaptation of cellular defences following preconditioning of the heart by repeated ischemia. Cardiovasc Res 1993; 27: 578 – 584.

    Article  PubMed  CAS  Google Scholar 

  39. Reimer KA, Heide RSV, Jennings RB. Ischemic preconditioning slows ischemic metabolism and limits myocardial infarct size. Ann NY Acad Sci 1993; 723: 99 – 115.

    Article  Google Scholar 

  40. Kaplan LJ, Bellows CF, Blum H, Mitchell M, Whitman GJR. Ischemic preconditioning preserves end-ischemic ATP, enhancing functional recovery and coronary flow during reperfusion. J Surg Res 1994; 57: 179 – 184.

    Article  PubMed  CAS  Google Scholar 

  41. Kimura Y, Iyengar J, Subramanian R, Cordis GA, Das DK. Preconditioning of the heart by repeated stunning: attenuation of post-ischemic dysfunction. Basic Res Cardiol 1992; 87: 128 – 138.

    Article  PubMed  CAS  Google Scholar 

  42. Flack JE, Kimura Y, Engelman RM, Rousou JA, Iyengar J, Jones R, Das DK. Preconditioning the heart by repeated stunning improves myocardial salvage. Circulation 1995; 84: III369–III374.

    Google Scholar 

  43. Bergmeyer HU. Methods of Enzymatic Analysis, volume 4, Verlag Chemie International, Florida, 1981.

    Google Scholar 

  44. Cordis, GA, Engelman RM, Das DK. Novel dual-wavelength monitoring approach for the improved rapid separation and estimation of adenine nucleotides and creatine phosphate by high performance liquid chromatography. J Chromatogr 1988; 459: 229 – 236.

    Article  PubMed  CAS  Google Scholar 

  45. Ingwall JS. Phosphorus nuclear magnetic resonance spectroscopy of cardiac and skeletal muscles. Am J Physiol 1982; 242: H729 – H744.

    PubMed  CAS  Google Scholar 

  46. Deussen A, Henrich M, Hamacher K, Borst MM, Herzog H, Coenen HH, Stocklin G, Feinendegen LE, Schrader J. Noninvasive assessment of regional cardiac adenosine using positron emission tomography. J Nucl Med 1992; 33: 2138 – 2144.

    PubMed  CAS  Google Scholar 

  47. Ganóte CE, Kaltenbach, Oxygen-induced enzyme release: early events and a proposed mechanism. J Mol Cell Cardiol 1979; 11: 389 – 406.

    Article  PubMed  Google Scholar 

  48. Kehrer JP, Park Y, Sies H. Energy dependence of enzyme release from hypoxic isolated perfused rat heart tissue. J Appi Physiol 1988; 65: 1855 – 1860.

    CAS  Google Scholar 

  49. Otani H, Engelman RM, Rousou JA, Breyer RH, Das DK. Enhanced prostaglandin synthesis due to phospholipid breakdown in ischemic-reperfused myocardium. J Moll Cell Cardiol 1986; 18: 953 – 961.

    Article  CAS  Google Scholar 

  50. Karmazyn M, Tani M, Neely JR. Effect of prostaglandins 12 (prostacyclin) and F2ot on function, energy metabolism, and calcium uptake in ischemic-reperfused hearts. Cardiovasc Res 1993; 27: 396 – 402.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Das, D.K., Maulik, N. (1996). Bioenergetics, ischemic contracture and reperfusion injury. In: Karmazyn, M. (eds) Myocardial Ischemia: Mechanisms, Reperfusion, Protection. EXS, vol 76. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8988-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8988-9_10

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9857-7

  • Online ISBN: 978-3-0348-8988-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics