Skip to main content

Neural regulation of coronary vascular resistance: Role of nitric oxide in reflex cholinergic coronary vasodilation in normal and pathophysiologic states

  • Chapter
Myocardial Ischemia: Mechanisms, Reperfusion, Protection

Part of the book series: EXS ((EXS,volume 76))

  • 1404 Accesses

Summary

A number of reflexes participate in the control of coronary vascular resistance through activation of the sympathetic or parasympathetic nervous system. Classically, activation of vagal efferent fibers to the heart results in vasodilation due to the release of acetylcholine and activation of muscarinic receptors. Recently, we have found that activation of a number of reflexes in conscious dogs, the Bezold-Jarisch reflex and the carotid chemoreflex in particular, results in cholinergic coronary vasodilation which is blocked by an inhibitor of nitric oxide synthesis, nitro-L-arginine. After the development of pacing-induced heart failure, the cholinergic dilation subsequent to activation of the Bezold-Jarisch or carotid chemoreflex is essentially abolished, since coronary blood vessels no longer produce nitric oxide. In contrast, after brief exercise training, there is a potentiation of Bezold-Jarisch reflex-induced coronary vasodilation since exercise upregulates nitric oxide production by coronary blood vessels. Since the Bezold-Jarisch reflex may be important as a compensatory mechanism during acute myocardial infarction, and the carotid chemoreflex is the acute mechanisms responsible for ameliorating systemic hypoxemia, the role of nitric oxide in reflex cholinergic coronary vasodilation may be essential in the compensatory vascular adjustments evoked by these and other reflexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. LeRoy GV, Fenn GK, Gilbert NC. The influence of xanthine drugs and atropine on the mortality rate after experimental occlusion of a coronary artery. Am Heart J 1942; 23: 637–43

    Article  CAS  Google Scholar 

  2. McEachern CG, Mannino GW, Hall GE. Sudden occlusion of coronary arteries following removal of cardiosensory pathways. AMA Arch Int Med 1940; 65: 661–70.

    Google Scholar 

  3. Eckenhoff JE, Hafkenschiel JH, Landmesser CM. Coronary circulation in the dog. Am J Physiol 1947; 148: 582–96.

    PubMed  CAS  Google Scholar 

  4. Opdyke DF, Selkurt EE. A study of alleged intercoronary reflexes following coronary occlusion. Am Heart J 1948; 36: 73–88.

    Article  PubMed  CAS  Google Scholar 

  5. Guzman SV, Swenson E, Jones M. Intercoronary reflex. Demonstration of coronary angiography. Circ Res 1962; 10: 739–45.

    PubMed  CAS  Google Scholar 

  6. West JW, Kobayashi T, Anderson FS. Effects of selective coronary embolization on coronary blood flow and coronary sinus venous blood oxygen saturation in dogs. Circ Res 1962; 10: 722–38.

    PubMed  CAS  Google Scholar 

  7. Joyce EE, Gregg DE. Coronary artery occlusion in the intact unanesthetized dog: intercoronary reflexes. Am J Physiol 1967; 213: 64–70.

    PubMed  CAS  Google Scholar 

  8. Ascanio G, Barrera F, Lautsch EV, Oppenheimer MJ. Role of reflexes following myocardial necrobiosis. Am J Physiol 1965; 209: 1081–88.

    PubMed  CAS  Google Scholar 

  9. Kolatat T, Ascanio G, Tallarida RJ, Oppenheimer MJ. Action potentials in the sensory vagus at the time of coronary infarction. Am J Physiol 1967; 213: 71–8.

    PubMed  CAS  Google Scholar 

  10. Peterson DF, Bishop VS. Reflex blood pressure control during acute myocardial ischemia in the conscious dog. Circ Res 1974; 34: 226–32.

    PubMed  CAS  Google Scholar 

  11. Webb SW, Adgey A A J, Pantridge JF. Autonomic disturbance at onset of acute myocardial infarction. Br Med J 1972; 3: 89–92.

    Article  PubMed  CAS  Google Scholar 

  12. Feigl EO. Coronary physiology. Physiol Rev 1983; 63: 1–205.

    PubMed  CAS  Google Scholar 

  13. Schwartz J, Velly J. The ß-adrenoceptor of pig coronary arteries: determination of ß\-and ß2-subtype by radioligand binding. Br J Pharmacol 1983; 79: 409–11.

    PubMed  CAS  Google Scholar 

  14. Vatner DE, Knight DR, Homey CJ, Vatner SF, Young MA. Subtypes of ß-adrenergic receptors in bovine coronary arteries. Circ Res 1986; 59: 463–73.

    PubMed  CAS  Google Scholar 

  15. Trivella MG, Broten TP, Feigl EO. ß-Receptor subtypes in the canine coronary circula¬tion. Am J Physiol 1990; 259: H1575–85.

    PubMed  CAS  Google Scholar 

  16. Miyashiro JK, Feigl EO. Feedforward control of coronary blood flow via coronary /?-receptor stimulation. Circ Res 1993; 73: 252–63.

    PubMed  CAS  Google Scholar 

  17. von-Bezold AA, Hirt AL. Über die physiologischen Wirkungen des Essigsäuren Veratrine. Unter Physiol Lab Wurtzburg 1867; 1: 75–156.

    Google Scholar 

  18. Jarisch A, Zotterman Y. Depressor reflexes from the heart. Acta Physiol Scan 1948; 16: 31–5.

    Article  Google Scholar 

  19. Nonidez JF. Studies on the innervation of the heart. Am J Anat 1939; 65: 361–413.

    Article  Google Scholar 

  20. Miller MR, Kasahara M. Studies on the nerve endings in the heart. Am J Anat 1964; 115: 217–34.

    Article  PubMed  CAS  Google Scholar 

  21. Johnston BD. Nerve endings in the human endocardium. Am J Anat 1968; 122: 621–30.

    Article  PubMed  CAS  Google Scholar 

  22. Zucker IH. Left ventricular receptors: physiological controllers or pathological curiosities? Basic Res in Cardio 1986; 81: 539–57.

    Article  CAS  Google Scholar 

  23. Frink RJ, James TN. Intracardiac route of the Bezold—Jarisch reflex. Am J Physiol 1971; 221: 1464–69.

    PubMed  CAS  Google Scholar 

  24. Thames MD, Klopfenstein HS, Abboud FM, Mark AL, Walker JL. Preferential distribution of inhibitory cardiac receptors with vagal afferents to the inferoposterior wall of the left ventricle activated during coronary occlusion in the dog. Circ Res 1978; 43: 512–19.

    PubMed  CAS  Google Scholar 

  25. Walker JL, Thames MD, Abboud FM, Mark AL, Klopfenstein HS. Preferential distribution of inhibitory cardiac receptors in left ventricle of the dog. Am J Physiol 1978; 235: H188–92.

    PubMed  CAS  Google Scholar 

  26. Hintze TH, Kaley G. Ventricular receptors activated following myocardial prostaglandin synthesis initiate reflex hypotension, reduction in heart rate, and redistribution of cardiac output in the dog. Circ Res 1984; 54: 239–47.

    PubMed  CAS  Google Scholar 

  27. Coleridge HM, Coleridge JCG, Ginzel KH, Baker DG, Banzett RB, Morrison MA. Stimulation of ‘irritant’ receptors and afferent C-fibers in the lungs by prostaglandins. Nature 1976; 264: 451–53.

    Article  PubMed  CAS  Google Scholar 

  28. Coleridge HM, Coleridge JCC. Cardiovascular afferents involved in regulation of peripheral vessels. Ann Rev Physiol 1980; 42: 413–27.

    Article  CAS  Google Scholar 

  29. Hintze TH. Reflex regulation of the circulation after stimulation of cardiac receptors by prostaglandins. Fed Proc 1987; 46: 73–80.

    PubMed  CAS  Google Scholar 

  30. Thoren P. Left ventricular receptors activated by severe asphyxia and by coronary artery occlusion. Acta Physiol Scand 1972; 85: 455–63.

    Article  PubMed  CAS  Google Scholar 

  31. Mark AL, Abboud FM, Schmid PG, Heistad DD. Reflex vascular responses to left ventricular outflow obstruction and activation of ventricular baroreceptors in dogs. J Clin Invest 1973; 52: 1147–53.

    Article  PubMed  CAS  Google Scholar 

  32. Zucker IH, Niebauer MJ, Cornish KG. Acute aortic stenosis in the conscious dog: effects of inotropic state on heart rate. Am J Physiol 1986; 250: H159–66.

    PubMed  CAS  Google Scholar 

  33. Hainsworth R. Reflexes from the heart. Physiol Rev 1991; 71: 617–58.

    PubMed  CAS  Google Scholar 

  34. Feigl EO: Reflex parasympathetic coronary vasodilation elicited from cardiac receptors in the dog. Circ Res 1975; 37: 175–82.

    PubMed  CAS  Google Scholar 

  35. Zucker IH, Cornish KG, Hackley J, Bliss K: Effects of left ventricular receptor stimulation on coronary blood flow in conscious dogs. Circ Res 1987; 61(11): II54–II60.

    Google Scholar 

  36. Furchgott RF, Vanhoutte PM. Endothelium—derived relaxing and contracting factors. FASEB J 1989; 3: 2007–18.

    PubMed  CAS  Google Scholar 

  37. Moneada S, Higgs A. The L—arginine—nitric oxide pathway. N Engl J Med 1993; 329: 2002–12.

    Article  Google Scholar 

  38. Broten TP, Miyashiro JK, Moneada S, Feigl EO. Role of endothelium-derived relaxing factor in parasympathetic coronary vasodilation. Am J Physiol 1992; 262: HI579–84.

    Google Scholar 

  39. Shen W, Ochoa M, Xu X, Wang J, Hintze TH. Role of EDRF/NO in parasympathetic coronary vasodilation following carotid chemoreflex activation in conscious dogs. Am J Physiol 1994; 267: H605–13.

    PubMed  CAS  Google Scholar 

  40. Zhao G, Shen W, Xu X, Ochoa M, Bernstein R, Hintze TH. Selective impairment of vagally mediated, nitric oxide—dependent coronary vasodilation in conscious dogs after pacing-induced heart failure. Circulation 1995; 91: 2655–63.

    PubMed  CAS  Google Scholar 

  41. Chan PS, Cervoni P. Prostaglandins, prostacyclin, and thromboxane in cardiovascular diseases. Drug Develop Res 1986; 7: 341–59.

    Article  CAS  Google Scholar 

  42. Hintze TH, Martin EG, Messina E J, Kaley G. Prostacyclin (PGI2) elicits reflex bradycardia in dogs: evidence for vagal mediation. Proc Soc Exp Bio Med 1979; 162: 96–100.

    CAS  Google Scholar 

  43. Hintze TH, Martin EG, Messina E J, Kaley G. Prostacyclin (PGI2) elicits reflex bradycardia in dogs: evidence for vagal mediation. Proc Soc Exp Bio Med 1979; 162: 96–100.

    CAS  Google Scholar 

  44. Marshall JM. Peripheral chemoreceptors and cardiovascular regulation. Physiol Rev 1994; 74: 543–94.

    PubMed  CAS  Google Scholar 

  45. Gonzalez C, Almaraz L, Obeso A, Rigual R. Carotid body chemoreceptors: from natural stimuli to sensory discharges. Physiol Rev 1994; 74: 829–98.

    PubMed  CAS  Google Scholar 

  46. Hashimoto K, Igarashi S, Uei I, Kumakura S. Carotid chemoreceptor reflex effects on coronary flow and heart rate. Am J Physiol 1964; 206: 536–40.

    PubMed  CAS  Google Scholar 

  47. Hackett JG, Abboud FM, Mark AL, Schmid PG, Heistad DD. Coronary vascular responses to stimulation of chemoreceptors and baroreceptors. Evidence for reflex activation of vagal cholinergic innervation. Circ Res 1972; 31: 8–17.

    PubMed  CAS  Google Scholar 

  48. Vatner SF, McRitchie RJ. Interaction of the chemoreflex and the pulmonary inflation reflex in the regulation of coronary circulation in conscious dogs. Circ Res 1975; 37: 664–73.

    PubMed  CAS  Google Scholar 

  49. Ito BR, Feigl EO. Carotid chemoreceptor reflex parasympathetic coronary vasodilation in the dog. Am J Physiol 1985; 249: HI 167–75.

    Google Scholar 

  50. Sakuma I, Togashi H, Yoshioka M, Saito H, Yanagida M, Tamura M. et al. N-methyl-L-arginine, an inhibitor of L-arginine-derived nitric oxide synthesis, stimulates renal sympathetic nerve activity in vivo. A role for nitric oxide in the central regulation of sympathetic tone. Circ Res 1992; 70: 607–11.

    PubMed  CAS  Google Scholar 

  51. Kirchheim HR. Systemic arterial baroreceptor reflexes. Physiol Rev 1976; 56: 100–176.

    PubMed  CAS  Google Scholar 

  52. Feigl EO. Carotid sinus reflex control of coronary blood flow. Circ Res 1968; 23: 223–37.

    PubMed  CAS  Google Scholar 

  53. DiSalvo J, Parker PE, Scott JB, Haddy FJ. Carotid baroreceptor influence on coronary vascular resistance in the anesthetized dog. Am J Physiol 1971; 221: 156–60.

    PubMed  CAS  Google Scholar 

  54. Murray PA, Vatner SF. Carotid sinus baroreceptor control of right coronary circulation in normal, hypertrophied, and failing right ventricles of conscious dogs. Circ Res 1981; 49: 1339–49.

    PubMed  CAS  Google Scholar 

  55. Powell J, Feigl EO. Carotid sinus reflex coronary vasoconstriction during controlled myocardial oxygen metabolism in the dog. Circ Res 1979; 44: 44–51.

    PubMed  CAS  Google Scholar 

  56. Falicov RE, Resnekov L, Kocandrle V, King S, Little CF. Circulatory effects of carotid sinus nerve stimulation in dogs with reference to coronary flow and resistance. Circulation 1970; 41/42(suppl II): 172–78.

    Google Scholar 

  57. Vatner SF, Franklin D, Van Citters RL, Braunwald E. Effects of carotid sinus nerve stimulation on the coronary circulation of the conscious dog. Circ Res 1970; 27: 11–21.

    PubMed  CAS  Google Scholar 

  58. Ito BR, Feigl EO. Carotid baroreceptor reflex coronary vasodilation in the dog. Circ Res 1985; 56: 486–95.

    PubMed  CAS  Google Scholar 

  59. Whipple GH, Sheffield LT, Woodman EG, Theopphilis C, Freidman S. Reversible congestive heart failure due to rapid stimulation of the normal heart. Proc N Eng Cardiovasc Soc 1962; 20: 39–40.

    Google Scholar 

  60. Coleman HN, Taylor RR, Pool PE, Whipple GH, Covell JW, Ross J Jr. et al. Congestive heart failure following chronic tachycardia. Am Heart J 1971; 81: 790–98.

    Article  PubMed  Google Scholar 

  61. Armstrong PW, Stopps TP, Ford SE, Debold AJ. Rapid ventricular pacing in the dog: pathophysiologic studies of heart failure. Circulation 1986; 74: 1075–84.

    Article  PubMed  CAS  Google Scholar 

  62. Wilson JR, Douglas P, Hickey WF, Lanoce V, Ferraro N, Muhammad A. et al. Experimental heart failure produced by rapid ventricular pacing in the dog: cardiac effects. Circulation 1987; 75: 857–67.

    Article  PubMed  CAS  Google Scholar 

  63. Shannon RP, Komamura K, Stambler BS. Bigaud M, Manders WT, Vatner SF. Alteration in myocardial contractility in conscious dogs with dilated cardiomyopathy. Am J Physiol 1991; 260: HI903–11.

    Google Scholar 

  64. Spinale FG, Zellner JL, Tomita M, Crawford FA, Zile MR. Relation between ventricular and myocyte remodeling with the development and regression of supraventricular tachycardia-induced cardiomyopathy. Circ Res 1991; 69: 1058–67.

    PubMed  CAS  Google Scholar 

  65. Kajstura J, Zhang X, Liu Y, Cheng W, Olivetti G. Hintze TH. Anversa P. Cellular basis of pacing-induced dilated myopathy: cell loss and myocyte hypertrophy. Circulation 1995; 92: 2306–2317.

    PubMed  CAS  Google Scholar 

  66. Chen JS, Wang W, Cornish KG, Zucker IH. Baro- and ventricular reflexes in conscious dogs subjected to chronic tachycardia. Am J Physiol 1992; 263: H1084–89.

    PubMed  CAS  Google Scholar 

  67. Wang W, Chen JS, Zucker IH. Carotid sinus baroreceptor sensitivity in experimental heart failure. Circulation 1990; 81: 1959–66.

    Article  PubMed  CAS  Google Scholar 

  68. Eckberg DL, Drabinsky M, Braunwald E. Defective cardiac parasympathetic control in patients with heart disease. N Engl J Med 1971; 285: 877–83.

    Article  PubMed  CAS  Google Scholar 

  69. Ferguson DW, Abboud FM, Mark AL. Selective impairment of baroreflex mediated vasoconstrictor response in patients with ventricular dysfunction. Circulation 1984; 69: 451–60.

    Article  PubMed  CAS  Google Scholar 

  70. Dibner-Dunlap ME, Thames MD. Control of sympathetic nerve activity by vagal mechanoreflexes is blunted in heart failure. Circulation 1992; 86: 1929–34.

    PubMed  CAS  Google Scholar 

  71. Brandle M, Wang W, Zucker IH. Ventricular mechanoreflex and chemoreflex alterations in chronic heart failure. Circ Res 1994; 74: 262–70.

    PubMed  CAS  Google Scholar 

  72. Murray PA, Vatner SF. Reflex cardiovascular response to chemoreceptor stimulation in conscious dogs with cardiac hypertrophy. Am J Physiol 1983; 245: H871–79.

    PubMed  CAS  Google Scholar 

  73. Kubo SH, Rector TS, Bank AJ, William RE, Heifetz SM. Endothelium-dependent vasodilation is attenuated in patients with heart failure. Circulation 1991; 84: 1589–96.

    PubMed  CAS  Google Scholar 

  74. Angus JA, Ferrier CP, Sudhir K, Kaye DM, Jennings GL. Impaired contraction and relaxation in skin resistance arteries from patients with congestive heart failure. Cardio-vasc Res 1993; 27: 204–10.

    Article  CAS  Google Scholar 

  75. Ontkean M, Gay R, Greenberg B. Diminished endothelium-derived relaxing factor activity in an experimental model of chronic heart failure. Circ Res 1991; 69: 1088–96.

    PubMed  CAS  Google Scholar 

  76. Wang J, Seyedi N, Xu X, Wolin MS, Hintze TH. Defective endothelium-mediated control of coronary circulation in conscious dogs after heart failure. Am J Physiol 1994; 266: H670–80.

    PubMed  CAS  Google Scholar 

  77. Hintze TH, Vatner SF. Reactive dilation of large coronary arteries in conscious dogs. Circ Res 1984; 54: 50–57.

    PubMed  CAS  Google Scholar 

  78. Holtz J, Bassenge E. Two dilatory mechanisms of anti-anginal drugs on epicardial coronary arteries in vivo: indirect, flow-dependent, endothelium-mediated dilation and direct smooth muscle relaxation. Z Kardiol 1983; 72 (suppl 3): 98 - 106.

    PubMed  CAS  Google Scholar 

  79. Hayashi Y, Tomoike A, Nagasawa K, Yamada A, Nishijima H, Adachi H. et al. Functional and anatomical recovery of endothelium after denudation of coronary artery. Am J Physiol 1988; 254: H1081 - 90.

    PubMed  CAS  Google Scholar 

  80. Wang J, Kaley G, Wolin MS, Hintze TH. Nitro-L-arginine specially inhibits the flow velocity induced dilation of large coronary artery via L-arginine pathway in conscious dogs (abstract). FASEB J 1991; 5: A660.

    Google Scholar 

  81. Chu A, Chambers DE, Lin CC, Kuehl WD, Palmer RJ, Moneada S. et al. Effects of inhibition of nitric oxide formation on basal vasomotion and endothelium-dependent response of the coronary arteries in awake dogs. J Clin Invest 1991; 87: 1964–68.

    Article  PubMed  CAS  Google Scholar 

  82. Zhang X, Xu X, Zhao G, Forfia P, Hintze TH. Reduction of nitrite production in coronary microvessels from the left ventricle of the failing canine heart. FASEB J 1995; 9: A26 (abstract).

    Google Scholar 

  83. Smith CJ, Sun D, Hoegler C, Zhao G, Xu X, Kobari Y. et al. Reduced gene expression of vascular endothelial nitric oxide synthase and cylooxygenase-1 in heart failure. Circ Res 1996; 78: 58–64.

    PubMed  CAS  Google Scholar 

  84. Leon AS, Bloor CM. Effects of exercise and its cessation on the heart and its blood supply. J Appi Physiol 1968; 24: 484–90.

    Google Scholar 

  85. Bloor CM, Leon AS. Interaction of age and exercise on the heart and its blood supply. Lab Invest 1979; 22: 160–65.

    Google Scholar 

  86. Laughlin MH, Diana JN, Tipton CM. Effects of exercise training on coronary reactive hyperemia and blood flow in the dog. J Appi Physiol 1978; 45: 604–10.

    CAS  Google Scholar 

  87. Schaible TF, Scheuer J. Cardiac adaptations on chronic exercise. Prog Cardiovasc Dis 1985; 27: 297–324.

    Article  PubMed  CAS  Google Scholar 

  88. Kramsch DM, Aspen AJ, Abramowitz BM, Kreimendahl T, Hood WB Jr. Reduction of coronary atherosclerosis by moderate conditioning exercise in monkey on an atherogenic diet. N Engl J Med 1981; 305: 1483–89.

    Article  PubMed  CAS  Google Scholar 

  89. Delp MD, McAllister RM, Laughlin MH. Exercise training alters endothelium-dependent vasoreactivity of rat abdominal aorta. J Appi Physiol 1993; 75: 1354–63.

    CAS  Google Scholar 

  90. Sun D, Huang A, Koller A, Kaley G. Short-term daily exercise activity enhances endothelial NO synthesis in skeletal muscle arterioles of rats. J Appi Physiol 1994; 76: 2241–47.

    CAS  Google Scholar 

  91. Muller JM, Myers PR, Laughlin H. Vasodilator responses of coronary resistance arteries of exercise-trained pigs. Circulation 1994; 89: 2308–14.

    PubMed  CAS  Google Scholar 

  92. Wang J, Wolin MS, Hintze TH. Chronic exercise enhances endothelium-mediated dilation of epicardial coronary artery in conscious dogs. Circ Res 1993; 73: 829–38.

    PubMed  CAS  Google Scholar 

  93. Sessa WC, Pritchard K, Seyedi N, Wang J, Hintze TH. Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res 1994; 74: 349–53.

    PubMed  CAS  Google Scholar 

  94. Zhao G, Xu X, Ochoa M, Hintze TH. Exercise training enhances reflex cardiac choliner-gic-NO mediated coronary vasodilation in conscious dogs. Circulation 1995; 92 (suppl 8): 1767 (abstract).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Zhao, G., Hintze, T.H., Kaley, G. (1996). Neural regulation of coronary vascular resistance: Role of nitric oxide in reflex cholinergic coronary vasodilation in normal and pathophysiologic states. In: Karmazyn, M. (eds) Myocardial Ischemia: Mechanisms, Reperfusion, Protection. EXS, vol 76. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8988-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8988-9_1

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9857-7

  • Online ISBN: 978-3-0348-8988-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics