Skip to main content

Probabilistic Robustness Analysis and Design of Uncertain Systems

  • Conference paper
Dynamical Systems, Control, Coding, Computer Vision

Part of the book series: Progress in Systems and Control Theory ((PSCT,volume 25))

Abstract

In the probabilistic approach for robustness analysis and design, one of the objectives is to compute the probability that a control system subject to uncertainty Δ, either real, complex or mixed, restricted to a set Δ attains a given performance level γ. Then, it is crucial to derive explicit bounds for the number of samples required to estimate this probability with a certain accuracy and confidence a priori specified. It can be easily shown that the number N of randomly generated samples is independent of the number of blocks of Δ and the size of Δ. This fact is an immediate consequence of the Law of Large Numbers and is often used in Monte Carlo simulation. In the first part of the paper we discuss several bounds and we show their application to probabilistic robustness analysis. Subsequently, we explain how probabilistic robust design can be performed and we discuss connections with Learning Theory, showing how the problem structure can be taken into account. Current research directions related to sample generation in various sets are finally outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bai, E.-W., R. Tempo and M. Fu (1997). Worst Case Properties of the Uniform Distribution and Randomized Algorithms for Robustness Analysis, Proceedings of the American Control Conference, Albuquerque, pp. 861–865; to appear in Mathematics of Control, Signals, and Systems.

    Google Scholar 

  2. Barmish, B. R. (1994). New Tools for Robustness of Linear Systems, McMillan, New York.

    MATH  Google Scholar 

  3. Barmish B. R. and C. M. Lagoa (1997). The Uniform Distribution: A Rigorous Justification for its use in Robustness Analysis, Mathematics of Control, Signals, and Systems, vol. 10, pp. 203–222.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernoulli, J. (1713). Ars Conjectandi.

    Google Scholar 

  5. Bhattacharyya, S. P., H. Chapellat and L. H. Keel (1995). Robust Control: The Parametric Approach, Prentice-Hall, Englewood Cliffs.

    MATH  Google Scholar 

  6. Blondel V. and J. N. Tsitsiklis (1997). NP-Hardness of Some Linear Control Design Problems, SIAM Journal of Control and Optimization, vol. 35, pp. 2118–2127.

    Article  MathSciNet  MATH  Google Scholar 

  7. Calafiore, G., F. Dabbene and R. Tempo (1998). Uniform Sample Generation of Vectors in £p Balls for Probabilistic Robustness Analysis; to appear in Proceedings of the IEEE Conference on Decision and Control, Tampa.

    Google Scholar 

  8. Calafiore, G., F. Dabbene and R. Tempo (1998). Uniform Sample Generation in Matrix Spaces: the Probability Density Function of the Singular Values, Technical Report, CENS-CNR 98–3.

    Google Scholar 

  9. Braatz, R. P., P. M. Young, J. C. Doyle, and M. Morari, (1994). Computational Complexity of µ Calculation, IEEE Transactions on Automatic Control, vol. AC-39, pp. 1000–1002.

    Article  MathSciNet  Google Scholar 

  10. Chen X. and K. Zhou (1997). A Probabilistic Approach to Robust Control, Proceedings of the IEEE Conference on Decision and Control, San Diego, pp. 4894–4895.

    Google Scholar 

  11. Chen X. and K. Zhou (1997). On the Probabilistic Characterization of Model Uncertainty and Robustness, Proceedings of the IEEE Conference on Decision and Control, San Diego, pp. 3816–3821.

    Google Scholar 

  12. Chernoff, H. (1952). A Measure of Asymptotic Efficiency for Test of Hypothesis Based on the Sum of Observations, Annals of Mathematical Statistics, vol. 23, pp. 493–507.

    Article  MathSciNet  MATH  Google Scholar 

  13. Coxson, G. E. and C. L. DeMarco (1994). The Computational Complexity of Approximating the Minimal Perturbation Scaling to Achieve Instability in an Interval Matrix, Mathematics of Control, Signal and Systems, vol. 7, pp. 279–291.

    Article  MathSciNet  MATH  Google Scholar 

  14. Devroye, L. (1986). Non-Uniform Random Variate Generation, Springer-Verlag, New York.

    MATH  Google Scholar 

  15. Djavdan, P., H. J. A. F. Tulleken, M. H. Voetter, H. B. Verbruggen and G. J. Olsder (1989). Probabilistic Robust Controller Design, Proceedings of the IEEE Conference on Decision and Control, Tampa, pp. 2164–2172.

    Google Scholar 

  16. Doyle, J. (1982). Analysis of Feedback Systems with Structured Uncertainty, IEE Proceedings, vol. 129, part D, pp. 242–250.

    MathSciNet  Google Scholar 

  17. Fukunaga, K. (1972). Introduction to Statistical Pattern Recognition, Academic Press, New York.

    Google Scholar 

  18. Khargonekar, P. P. and A. Tikku (1996). Randomized Algorithms for Robust Control Analysis Have Polynomial Time Complexity, Proceedings of the Conference on Decision and Control, Kobe, Japan, pp. 3470–3475.

    Google Scholar 

  19. Khargonekar, P. and A. Yoon (1997). Computational Experiments in Robust Stability Analysis, Proceedings of the Conference on Decision and Control, San Diego, pp. 3260–3264.

    Google Scholar 

  20. Khatri, S. H. and P. A. Parrilo (1998). Spherical µ, Proceedings of the American Control Conference, Philadelphia, pp. 2314–2318.

    Google Scholar 

  21. McFarlane, D. C. and K. Glover (1990). Robust Controller Design Using Normalized Coprirne Factor Plant Descriptions, Springer-Verlag, pp. 132–142.

    Google Scholar 

  22. Nemirovskii, A. (1993). Several NP-Hard Problems Arising in Robust Stability Analysis, Mathematics of Control, Signals and Systems, vol. 6, pp. 99–105.

    Article  MathSciNet  MATH  Google Scholar 

  23. Polijak S. and J. Röhn (1993). Checking Robust Non-Singularity is NP-Hard, Mathematics of Control, Signals and Systems, vol. 6, pp. 1–9.

    Article  MathSciNet  Google Scholar 

  24. Ray, L. R. and R. F. Stengel (1993). A Monte Carlo Approach to the Analysis of Control System Robustness, Automatica, vol. 29, pp. 229–236.

    Article  MathSciNet  MATH  Google Scholar 

  25. Salehi, S. (1985). Application of Adaptive Observers to the Control of Flexible Spacecraft, IFAC Symposium on Control in Space, Toulouse, France.

    Google Scholar 

  26. Tempo, R., E. W. Bai and F. Dabbene (1997). Probabilistic Robustness Analysis: Explicit Bounds for the Minimum Number of Samples, Systems and Control Letters, vol. 30, pp. 237–242.

    Article  MathSciNet  MATH  Google Scholar 

  27. Vapnik V. N. and A. Ya Chervonenkis (1971). On the Uniform Convergence of Relative Frequencies to Their Probabilities, Theory of Probability and its Applications, vol. 16, pp. 264–280.

    Google Scholar 

  28. Vidyasagar, M. (1997). A Theory of Learning and Generalization, Springer-Verlag, London.

    MATH  Google Scholar 

  29. Vidyasagar, M. (1997). Statistical Learning Theory: An Introduction and Applications to Randomized Algorithms, Proceedings of the European Control Conference, Brussels, Belgium, pp. 161–189.

    Google Scholar 

  30. Sontag, E. D. (1998). VC Dimension of Neural Networks; to appear in Neural Networks and Machine Learning, Springer-Verlag, London.

    Google Scholar 

  31. Zhou, K., J. C. Doyle and K. Glover (1996). Robust and Optimal Control, Prentice-Hall, Upper Saddle River.

    MATH  Google Scholar 

  32. Zhu, X., Y. Huang and J. Doyle (1996). Soft vs. Hard Bounds in Probabilistic Robustness Analysis, Proceedings of the Conference on Decision and Control, Kobe, Japan, pp. 3412–3417.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Tempo, R., Dabbene, F. (1999). Probabilistic Robustness Analysis and Design of Uncertain Systems. In: Picci, G., Gilliam, D.S. (eds) Dynamical Systems, Control, Coding, Computer Vision. Progress in Systems and Control Theory, vol 25. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8970-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8970-4_12

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9848-5

  • Online ISBN: 978-3-0348-8970-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics