Skip to main content

Genetic Footprinting for Bacterial Functional Genomics

  • Chapter
Prokaryotic Genomics

Abstract

As more complete bacterial genome sequences become available, the need for broad, genomic-scale analytical methods becomes increasingly acute. Moreover, with a sizable portion of microbial genomes encoding proteins of unknown function, tools that suggest gene function or elucidate relationships among genes are crucial for any genomic-scale evaluation. While genomics tools may be central to a basic scientist’s interests in a model organism, they will also be critical to the applied scientist’s examination of a pathogen for targets for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Link A, Phillips D and Church G (1997) Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol 179: 6228–6237

    CAS  Google Scholar 

  2. Posfai G, Kolisnychenko V, Bereczki Z et al. (1999) Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome. Nucleic Acids Res 27: 4409–4415

    Article  CAS  Google Scholar 

  3. Datsenko K and Wanner B (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97: 6640–6645

    Article  CAS  Google Scholar 

  4. Karberg M, Guo H, Zhong J, et al. (2001) Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria. Nature Biotech 19: 1162–1167

    Article  CAS  Google Scholar 

  5. Akerley BJ, Rubin EJ, Camilli A, et al. (1998) Systematic identification of essential genes by in vitro mariner muta-genesis. Proc Natl Acad Sci USA 95: 8927–8932

    Article  CAS  Google Scholar 

  6. Reich KA, Chovan L, Hessler P (1999) Genome scanning in Haemophilus influenza for identification of essential genes. J Bacteriol 181: 4961–4968

    CAS  Google Scholar 

  7. Hare R, Walker S, Dorman T, et al. (2001) Genetic footprinting in bacteria. J Bacteriology 183: 1694–1706

    Article  CAS  Google Scholar 

  8. Smith V, Botstein D, Brown PO (1995) Genetic footprinting: a genomic strategy for determining a gene’s function given its sequence. Proc Natl Acad Sci USA 92: 6479–6483

    Article  CAS  Google Scholar 

  9. Smith V, Chou KN, Lashkari D, et al. (1996) Functional analysis of the genes of yeast chromosome V by genetic foot-printing. Science 274: 2069–2074

    Article  CAS  Google Scholar 

  10. Kleckner N, Bender J, Gottesman S (1991) Uses of transposons with emphasis on Tn10. In: JH Miller (ed): Methods in enzymology: Bacterial genetic systems. Academic Press, New York, 139–180

    Chapter  Google Scholar 

  11. Davis RW, Botstein D, Roth JR (1980) A manual for genetic engineering: Advanced bacterial genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  12. Jensen KF (1993) The Escherichia coli K12 “wild types” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bacteriol 175: 3401–3407

    CAS  Google Scholar 

  13. Metcalf WW, Wanner BL (1993) Mutational analysis of an Escherichia coli fourteen-gene operon for phosphonate degradation, using TnphoA elements. J Bacteriol 175: 3430–3432

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Walker, S.S., Houseweart, C., Kenney, T.J. (2003). Genetic Footprinting for Bacterial Functional Genomics. In: Blot, M. (eds) Prokaryotic Genomics. Methods and Tools in Biosciences and Medicine. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8963-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8963-6_8

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-6596-7

  • Online ISBN: 978-3-0348-8963-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics