Skip to main content

Use of Conditional-replication, Integration, and Modular CRIM Plasmids to Make Single-copy lacZ Fusions

  • Chapter

Part of the book series: Methods and Tools in Biosciences and Medicine ((MTBM))

Abstract

Ever since e fusion of the lac operon to a foreign promoter (for a purine biosynthetic gene) was shown to Subject the lacY gene to exogenous control (by purines [1]), lac reporter fusions have been proven to be invaluable to innumerable studies of gene Structure, gene regulation, protein localization, protein folding, protein-protein interactions, and other aspects of cell biology [2]. Consequently, many protocols and vectors have been developed over the years for the construction of lac fusions, not only in E. coli and other bacteria but also in many other cell types [3–5].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beckwith J (2000) The all purpose gene fusion. Methods Enzymol 326: 3–7

    Article  CAS  Google Scholar 

  2. Datsenko KA and Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97: 6640–6645

    Article  CAS  Google Scholar 

  3. Haldimann A, Prahalad MK, Fisher SL, et al. (1996) Altered recognition mutants of the response regulator PhoB: a new genetic strategy for studying protein-protein interactions. Proc Natl Acad Sci USA 93: 14361–14366

    Article  CAS  Google Scholar 

  4. Haldimann A and Wanner BL (2001) Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies in bacteria. J Bacteriol 183: 6384–6393

    Article  CAS  Google Scholar 

  5. Jacob F, Ullmann A, Monod J (1965) Délétions fusionnant l’opéron lactose et un opéron purine chez Escherichia coli. J Mol Biol 31: 704–719

    Google Scholar 

  6. Silhavy TJ, Beckwith JR (1985) Uses of lac fusions for the study of biological problems. Microbiol Rev 49: 398–418

    CAS  Google Scholar 

  7. Bier E, Vaessin H, Shepherd S, et al. (1989) Searching for pattern and mutation in the Drosophila genome with a PlacZ vector. Genes Dec 3: 1273–1287

    Article  CAS  Google Scholar 

  8. Fire A, Harrison SW, Dixon D (1990) A modular set of lacZ fusion vectors for studying gene expression in Caenorhabditis elegans. Gene 93: 189–198

    CAS  Google Scholar 

  9. Mansour SL, Thomas KR, Deng CX, Capecchi MR (1990) Introduction of a lacZ reporter gene into the mouse int-2 locus by homologous recombination Proc Natl Acad Sci USA 87: 7688–7692

    CAS  Google Scholar 

  10. Beckwith JR (1963) Restoration of operon activity by suppressors. Biochim Biophys Acta 76: 162–164

    Article  CAS  Google Scholar 

  11. Miller JH, Reznikoff WS, Silverstone AE et al. (1970) Fusions of the lac and trp regions of the Escherichia coli chromosome. J Bacteriol 104: 1273–1279

    CAS  Google Scholar 

  12. Casadaban MJ (1975) Fusion of the Escherichia coli lac genes to the ara promoter: A general technique using bacterial Mu-1 insertions. Proc Natl Acad Sci USA 72: 809–713

    Article  CAS  Google Scholar 

  13. Casadaban MJ, Cohen SN (1979) Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: In vivo probe for transcriptional control sequences. Proc Natl Acad Sci USA 76: 4530–4533

    Article  CAS  Google Scholar 

  14. Casadaban MJ, Chou J, Cohen SN (1980) In vitro gene fusions that join an enzymatically active b-galactosidase segment to amino-terminal fragments of exogenous proteins: Escherichia coli plasmid vectors for the detection and cloning of translational initiation signals. J Bacteriol 143: 971–980

    CAS  Google Scholar 

  15. Simons RW, Houman F, Kleckner N (1987) Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53: 85–96

    Article  CAS  Google Scholar 

  16. Fire A, Harrison SW, Dixon D (1990) A modular set of lacZ fusion vectors for studying gene expression in Caenorhabditis elegans. Gene 93: 189–198

    CAS  Google Scholar 

  17. Ostrow KS, Silhavy TJ, Garrett S (1986) cis-acting sites required for osmoregulation of ompF expression in Escherichia coli K-12. J Bacteriol 168: 1165–1171

    CAS  Google Scholar 

  18. Way JC, Davis MA, Morisato D et al. (1984) New Tn10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene 32: 369–379

    Article  CAS  Google Scholar 

  19. De Lorenzo V, Herrero M, Jakubzik U, Timmis KN (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172: 6568–6572

    Google Scholar 

  20. Huisman 0, Raymond W, Froehlich KU et al. (1987) A Tn10-lacZ-kanR-URA3 gene fusion transposon for insertion muta-genesis and fusion anlysis of yeast and bacterial genes. Genetics 116: 191–199

    CAS  Google Scholar 

  21. Manoil C (1991) Analysis of membrane protein topology using alkaline phospha-88 Lu Zhou, Soo-Ki Kim, Larisa Avramova, Kirill A. Datsenko and Barry L. Wanner tase and b-galactosidase gene fusions. Methods Cell Biol 34: 61–75

    Article  CAS  Google Scholar 

  22. Wilmes-Riesenberg MR, Wanner BL (1992) TnphoA and TnphoA’ elements for making and switching fusions for study of transcription, translation, and cell surface localization. JBacteriol 174: 4558–4575

    CAS  Google Scholar 

  23. Biery MC, Stewart FJ, Stellwagen AE et al. (2000) A simple in vitro Tn7-based transposition system with low target site selectivity for genome and gene analysis. Nucleic Acids Res 28: 1067–1077

    Article  CAS  Google Scholar 

  24. Goryshin IY, Jendrisak J, Hoffman LM et al. (2000) Insertional transposon muta-genesis by electroporation of released Tn5 transposition complexes. Nat Biotechnol 18: 97–100

    Article  CAS  Google Scholar 

  25. Griffin TJ, Parsons L, Leschziner AE et al. (1999) In vitro transposition of Tn552: a tool for DNA sequencing and mutagenesis. Nucleic Acids Res 27: 3859–3865

    CAS  Google Scholar 

  26. Akerley BJ, Rubin EJ, Camilli A et al. (1998) Systematic identification of essential genes by in vitro mariner muta-genesis. Proc Nail Acad Sci USA 95: 8927–8932

    Article  CAS  Google Scholar 

  27. Haldimann A, Wanner BL (2001) Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies in bacteria. J Bacteriol 183: 6384–6393

    Article  CAS  Google Scholar 

  28. Majumder K, Choudhury S, Bhatnagar RK (1994) Recombinant enrichment by exploitation of restriction sites with interrupted palindromes: Design, synthesis and incorporation of zero-background linkers in cloning and expression vectors. Gene 151: 147–151

    Article  CAS  Google Scholar 

  29. Lessard IAD, Pratt SD, McCafferty DG et al. (1998) Homologs of the vancomycin resistance D-ala-D-ala dipeptidase VanX in Streptomyces toyocaensis, Escherichia coli, and Synechocystis: Attributes of catalytic efficiency, stereoselectivity, and regulation with implications for function. Chemistry & Biology 5: 489–504

    Article  CAS  Google Scholar 

  30. Haldimann A, Daniels LL, Wanner BL (1998) Use of new methods for construction of tightly regulated arabinose and rhamnose promoter fusions in studies of the Escherichia coli phosphate regulon. J Bacteriol 180: 1277–1286

    CAS  Google Scholar 

  31. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97: 6640–6645

    Article  CAS  Google Scholar 

  32. Khlebnikov A, Datsenko KA, Skaug T et al. (2001) Homogeneous expression of the PBAD promoter in Escherichia coli by constitutive expression of the low-affinity high-capacity AraE transporter. Microbiol 147: 3241–3247

    CAS  Google Scholar 

  33. Jensen KF (1993) The Escherichia coli K12 “wild types” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bacteriol 175: 3401–3407

    CAS  Google Scholar 

  34. Wanner BL (1994) Gene expression in bacteria using TnphoA and TnphoA’ elements to make and switch phoA gene, lacZ (op), and lacZ (pr) fusions. In: KW Adolph (ed): Methods in molecular genetics, Vol. 3. Academic Press, Orlando, 291–310

    Google Scholar 

  35. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557–580

    Article  CAS  Google Scholar 

  36. Haldimann A, Prahalad MK, Fisher SL et al. (1996) Altered recognition mutants of the response regulator PhoB: a new genetic strategy for studying protein-protein interactions. Proc Natl Acad Sci USA 93: 14361–14366

    Article  CAS  Google Scholar 

  37. Agrawal DK, Wanner BL (1990) A phoA structural gene mutation that conditionally affects formation of the enzyme bacterial alkaline phosphatase. J Bacteriol 172: 3180–3190

    CAS  Google Scholar 

  38. Metcalf WW, Jiang W, Wanner BL (1994) Use of the rep technique for allele replacement to construct new Escherichia coli hosts for maintenance of R6Kg origin plasmids at different copy numbers. Gene 138: 1–7

    Article  CAS  Google Scholar 

  39. Ausubel FM, Brent R, Kingston RE et al. (2002) Current protocols in molecular biology. John Wiley & Sons, New York

    Google Scholar 

  40. Beckwith JR, Signer ER (1966) Transposition of the Lac Region of Escherichia coli. I. Inversion of the Lac Operon and Transduction of Lac by f80. JMolBiol 19: 254–265

    CAS  Google Scholar 

  41. Reznikoff WS, Miller JH, Scaife JG, Beckwith JR (1969) A mechanism for repressor action. J Mol Biol 43: 201–213

    Article  CAS  Google Scholar 

  42. Sarthy A, Fowler A, Zabin I, Beckwith J (1979) Use of gene fusions to determine a partial signal sequence of alkaline phosphatase. J Bacteriol 139: 932–939

    CAS  Google Scholar 

  43. Kenyon CJ, Walker GC (1980) DNA-damaging agents stimulate gene expression at specific loci in Escherichia coli. Proc Natl Acad Sci USA 77: 2819–2823

    Article  CAS  Google Scholar 

  44. Wanner BL, Wieder S, McSharry R (1981). Use of bacteriophage transposon Mu dl to determine the orientation for three proC-linked phosphate-starvationinducible (psi) genes in Escherichia coli K-12. J Bacteriol 146: 93–101

    CAS  Google Scholar 

  45. Mahan MJ, Slauch JM, Mekalanos JJ (1993) Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259: 686–688

    Article  CAS  Google Scholar 

  46. Brown S (1987) Mutations in the gene for EF-G reduce the requirement for 4.5S RNA in the growth of E. coli. Cell 49: 825–833

    CAS  Google Scholar 

  47. Guzman LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177: 4121–4130

    CAS  Google Scholar 

  48. Müller J, Oehler S, Müller-Hill B (1996) Repression of lac promoter as a function of distance, phase and quality of an auxiliary lac operator. J Mol Biol 257: 21–29

    Article  Google Scholar 

  49. Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103–119

    Article  CAS  Google Scholar 

  50. Noel RJ, Reznikoff WS (2000) Structural studies of lacUV5-RNA polymerase interactions in vitro - Ethylation interference and missing nucleoside analysis. J Biol Chem 275: 7708–7712

    Article  CAS  Google Scholar 

  51. Dunn T, Hahn S, Ogden S, Schleif R (1984) An araBAD operator at -280 base pairs that is required for pBAD repression: addition of DNA helical turns between the operator and promoter cylindrically hinders repression. Proc Natl Acad Sci USA 81: 5017–5020

    Article  CAS  Google Scholar 

  52. Beckwith JR (1970) Lac: The genetic system. In: JR Beckwith, D Zipser (eds): The Lactose Operon. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 5–26

    Google Scholar 

  53. Horwitz JP, Chua J, Curby RJ et al. (1964) Substrates for cytochemical demonstration of enzyme activity. I. Some substituted 3-indolyl-13-D-glycopyranosides. J Med Chem 7: 574

    Article  CAS  Google Scholar 

  54. Miller JH (1972) Experiments in molecular genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  55. Miller JH (1992) A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory Press, Plainview, NY

    Google Scholar 

  56. Haldimann A, Fisher SL, Daniels LL et al. (1997) Transcriptional regulation of the Enterococcus faecium BM4147 vancomycin resistance gene cluster by the VanS-VanR two-component regulatory system in Escherichia coli. J Bacteriol 179: 5903–5913

    CAS  Google Scholar 

  57. Silva JC, Haldimann A, Prahalad MK et al. (1998) In vivo characterization of the type A and B vancomycin-resistant enterococci (VRE) VanRS two-component systems in Escherichia coli: A nonpathogenic model for studying the VRE signal transduction pathways. Proc Natl Acad Sci USA 95: 11951–11956

    CAS  Google Scholar 

  58. Mojica T (1975) Transduction by phage P1CM clr-100 in Salmonella typhimurium. Mol Gen Genet 138: 113–126

    Article  CAS  Google Scholar 

  59. Neal BL, Brown PK, Reeves PR (1993) Use of Salmonella phage P22 for transduction in Escherichia coli. J Bacteriol 175: 7115–7118

    CAS  Google Scholar 

  60. Low KB (1972) Escherichia coli K-12 F-prime factors, old and new. Bacteriol Rev 36: 587–607

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Zhou, L., Kim, SK., Avramova, L., Datsenko, K.A., Wanner, B.L. (2003). Use of Conditional-replication, Integration, and Modular CRIM Plasmids to Make Single-copy lacZ Fusions. In: Blot, M. (eds) Prokaryotic Genomics. Methods and Tools in Biosciences and Medicine. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8963-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8963-6_7

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-6596-7

  • Online ISBN: 978-3-0348-8963-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics