Skip to main content

Generalized Transduction

  • Chapter
Prokaryotic Genomics

Part of the book series: Methods and Tools in Biosciences and Medicine ((MTBM))

  • 248 Accesses

Abstract

Transduction is a phenomenon in which bacterial DNA is transferred from one bacterial cell to another by a phage particle. There are two types of transduction: generalized transduction and specialized transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Margolin P (1987) Generalized transduc- tion. In: F Neidhardt, J Ingraham, K Low, et al. (eds): Escherichia coli and Salmo-nella typhimurium: Cellular and mole- 6 cular biology. American Society for Microbiology, Washington, DC

    Google Scholar 

  2. Masters M (1985) Generalized transduc- 7 tion. In: J Scaife, D Leach, A Galizzi (eds): Genetics of bacteria. Academic Press, New York, 197–205

    Google Scholar 

  3. Masters M (1996) Generalized transduc- tion. In: FC Neidhardt (ed): Escherichia 8 coli and Salmonella: Cellular and molecular biology. American Society for Microbiology, Washington, DC, 2421–2441

    Google Scholar 

  4. Maloy S, Stewart V, Taylor R (1996) Ge- 9 netic analysis of pathogenic bacteria. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  5. Maloy S (1989) Experimental techniques in bacterial genetics. Jones and Bartlett, Boston, MA

    Google Scholar 

  6. Bochner B (1984) Curing bacterial cells of lysogenic viruses by using UCB indi¬cator plates. BioTechniques 2: 234–240

    CAS  Google Scholar 

  7. Sternberg NL, Maurer R (1991) Bacteriophage-mediated generalized trans¬duction in Escherichia coli and Salmo¬nella typhimurium. Methods Enzymol 204: 18–43

    Article  CAS  Google Scholar 

  8. Silhavy TJ, Berman ML, Enquist LW, et al. (1984) Experiments with gene fu¬sions. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  9. Casjens S, Hayden M (1988) Analysis in vivo of the bacteriophage P22 headful nuclease. J Mol Biol 199: 467–74

    Article  CAS  Google Scholar 

  10. Susskind MM, Botstein D (1978) Molecular genetics of bacteriophage P22. Microbiol Rev 42: 385–413

    CAS  Google Scholar 

  11. Poteete AR (1988) Bacteriophage P22. In: R Calender (ed): The bacteriophages. Plenum Press, New York, 647–682

    Google Scholar 

  12. Davis R, Botstein D, Roth RJ (1980) Advanced bacterial genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  13. Casjens S, Sampson L, Randall S, et al. (1992) Molecular genetic analysis of bacteriophage P22 gene 3 product, a protein involved in the initiation of headful DNA packaging. J Mol Biol 227: 1086–1099

    Article  CAS  Google Scholar 

  14. Schmieger H (1972) Phage P22-mutants with increased or decreased transduction abilities. Mol Gen Genet 119: 75–88

    Article  CAS  Google Scholar 

  15. Schmieger H, Backhaus H (1976) Altered cotransduction frequencies exhibited by HT-mutants of Salmonella-phage P22. Mol Gen Genet 143: 307–309

    Article  CAS  Google Scholar 

  16. Yarmonlinsky MB, Sternberg N (1988) Bacteriophage Pl. In: R Calendar (ed): The bacteriophages. Plenum Press, New York, 291–438

    Google Scholar 

  17. Benson NR, Roth J (1997) A Salmonella phage-P22 mutant defective in abortive transduction. Genetics 145: 17–27

    CAS  Google Scholar 

  18. Garzon A, Cano DA, Casadesus J (1995) Role of Erf recombinase in P22-mediated plasmid transduction. Genetics 140: 427–434

    CAS  Google Scholar 

  19. Orbach MJ, Jackson EN (1982) Transfer of chimeric plasmids among Salmonella typhimurium strains by P22 transduction. J Bacteriol 149: 985–994

    CAS  Google Scholar 

  20. Mann BA, Slauch JM (1997) Transduction of low-copy number plasmids by bacteriophage P22. Genetics 146: 447–456

    CAS  Google Scholar 

  21. Kiesel B, Wunsche L (1993) Phage Acm1-mediated transduction in the facultatively methanol-utilizing Acetobacter methanolicus MB 58/4. J Gen Virol 74: 1741–1745

    Article  CAS  Google Scholar 

  22. Herman NJ, Juni E (1974) Isolation and characterization of a generalized transducing bacteriophage for Acinetobacter. J Virol 13: 46–52

    CAS  Google Scholar 

  23. Shelton CB, Crosslin DR, Casey JL, et al. (2000) Discovery, purification, and char- acterization of a temperate transducing bacteriophage for Bordetella avium. J Bacteriol 182: 6130–6136

    CAS  Google Scholar 

  24. Welker NE (1988) Transduction in Bacillus stearothermophilus. J Bacteriol 170: 3761–3764

    CAS  Google Scholar 

  25. Vary PS, Garbe JC, Franzen M, et al. (1982) MP13, a generalized transducing bacteriophage for Bacillus megaterium. J Bacteriol 149: 1112–1119

    CAS  Google Scholar 

  26. Thorne CB (1978) Transduction in Bacillus thuringiensis. Appl Environ Microbiol 35: 1109–1115

    CAS  Google Scholar 

  27. Bender RA (1981) Improved generalized transducing bacteriophage for Caulobacter crescentus. J Bacteriol 148: 734–735

    CAS  Google Scholar 

  28. Yoshida Y, Mise K (1984) Characterization of generalized transducing phage phi w39 heteroimmune to phage P1 in Escherichia coli W39. Microbiol Immunol 28: 415–426

    CAS  Google Scholar 

  29. Young KK, Edlin G (1983) Physical and genetical analysis of bacteriophage T4 generalized transduction. Mol Gen Genet 192: 241–246

    Article  CAS  Google Scholar 

  30. Hodgson DA (2000) Generalized transduction of serotype 1/2 and serotype 4b strains of Listeria monocytogenes. Mol Microbiol 35: 312–323

    CAS  Google Scholar 

  31. Campos JM, Geisselsoder J, Zusman DR (1978) Isolation of bacteriophage MX4, a generalized transducing phage for Myxococcus xanthus. J Mol Biol 119: 167–178

    Article  CAS  Google Scholar 

  32. Geisselsoder J, Campos JM, Zusman DR (1978) Physical characterization of bacteriophage MX4, a generalized transducing phage for Myxococcus xanthus. J Mol Biol 119: 179–189

    Article  CAS  Google Scholar 

  33. Nakamura M, Horiuchi S, Nakaya R (1975) Comparative studies on generalized transducing bacteriophages of Proteus mirabilis, phim and pii. Jpn J Microbiol 19: 123–131

    CAS  Google Scholar 

  34. Coetzee JN (1975) Transduction of a Proteus vulgaris strain by a Proteus mirabilis bacteriophage. J Gen Microbiol 89: 299–309

    CAS  Google Scholar 

  35. Kilbane JJ, Miller RV (1988) Molecular characterization of Pseudomonas aeruginosa bacteriophages: identification and characterization of the novel virus B86. Virology 164: 193–200

    Article  CAS  Google Scholar 

  36. Ripp S, Ogunseitan OA, Miller RV (1994) Transduction of a freshwater microbial community by a new Pseudomonas aeruginosa generalized transducing phage, UT1. Mol Ecol 3: 121–126

    Article  CAS  Google Scholar 

  37. Matsumoto H, Itoh Y, Ohta S, et al. (1986) A generalized transducing phage of Pseudomonas cepacia. J Gen Microbiol 132: 2583–2586

    CAS  Google Scholar 

  38. Sik T, Horvath J, Chatterjee S (1980) Generalized transduction in Rhizobium meliloti. Mol Gen Genet 178: 511–516

    Article  CAS  Google Scholar 

  39. Sander M, Schmieger H (2001) Method for host-independent detection of generalized transducing bacteriophages in natural habitats. Appl Environ Microbiol 67: 1490–1493

    Article  CAS  Google Scholar 

  40. Schicklmaier P, Schmieger H (1995) Frequency of generalized transducing phages in natural isolates of the Salmonella typhimurium complex. Appl Environ Microbiol 61: 1637–1640

    CAS  Google Scholar 

  41. Llagostera M, Barbe J, Guerrero R (1986) Characterization of SE1, a new general transducing phage of Salmonella typhimurium. J Gen Microbiol 132: 1035–1041

    CAS  Google Scholar 

  42. Mise K, Kawai M, Yoshida Y, et al. (1981) Characterization of bacteriophage j2 of Salmonella typhi as a generalized transducing phage closely related to coliphage P1. J Gen Microbiol 126: 321–326

    CAS  Google Scholar 

  43. Mise K, Yoshida Y, Kawai M (1983) Generalized transduction between Salmonella typhi and Salmonella typhimurium by phage j2 and characterization of the j2 plasmid in Escherichia coli. J Gen Microbiol 129: 3395–3400

    CAS  Google Scholar 

  44. Regue M, Fabregat C, Vinas M (1991) A generalized transducing bacteriophage for Serratia marcescens. Res Microbiol 142: 23–27

    CAS  Google Scholar 

  45. Matsumoto H, Tazaki T, Hosogaya S (1973) A generalized transducing phage of Serratia marcescens. Jpn J Microbiol 17: 473–479

    CAS  Google Scholar 

  46. Humphrey SB, Stanton TB, Jensen NS, et al. (1997) Purification and characterization of VSH-1, a generalized transducing bacteriophage of Serpulina hyodysenteriae. J Bacteriol 179: 323–329

    CAS  Google Scholar 

  47. Schroeder CJ, Pattee PA (1984) Transduction analysis of transposon Tn551 insertions in the trp-thy region of the Staphylococcus aureus chromosome. J Bacteriol 157: 533–537

    CAS  Google Scholar 

  48. Burke J, Schneider D, Westpheling J (2001) Generalized transduction in Streptomyces coelicolor. Proc Natl Acad Sci USA 98: 6289–6294

    Article  CAS  Google Scholar 

  49. Stuttard C (1983) Localized hydroxylamine mutagenesis, and cotransduction of threonine and lysine genes, in Streptomyces venezuelae. J Bacteriol 155: 1219–1223

    CAS  Google Scholar 

  50. Stuttard C, Atkinson L, Vats S (1987) Genome structure in Streptomyces spp.: adjacent genes on the S. coelicolor A3(2) linkage map have cotransducible analogs in S. venezuelae. J Bacteriol 169: 3814–3816

    CAS  Google Scholar 

  51. Suss F, Klaus S (1981) Transduction in Streptomyces hygroscopicus mediated by the temperate bacteriophage SH10. Mol Gen Genet 181: 552–555

    Article  CAS  Google Scholar 

  52. Hava DL, Camilli A (2001) Isolation and characterization of a temperature-sensitive generalized transducing bacteriophage for Vibrio cholerae. J Microbiol Methods 46: 217–225

    Article  CAS  Google Scholar 

  53. Ichige A, Matsutani S, Oishi K, et al. (1989) Establishment of gene transfer systems for and construction of the genetic map of a marine Vibrio strain. J Bacteriol 171: 1825–1834

    CAS  Google Scholar 

  54. Muramatsu K, Matsumoto H (1991) Two generalized transducing phages in Vibrio parahaemolyticus and Vibrio alginolyticus. Microbiol Immunol 35: 1073–1084

    CAS  Google Scholar 

  55. Weiss BD, Capage MA, Kessel M, et al. (1994) Isolation and characterization of a generalized transducing phage for Xanthomonas campestris pv. campes-tris. J Bacteriol 176: 3354–3359

    CAS  Google Scholar 

  56. Meile L, Abendschein P, Leisinger T (1990) Transduction in the archaebacterium Methanobacterium thermoautotrophicum Marburg. J Bacteriol 172: 3507–3508

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Thierauf, A., Maloy, S. (2003). Generalized Transduction. In: Blot, M. (eds) Prokaryotic Genomics. Methods and Tools in Biosciences and Medicine. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8963-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8963-6_6

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-6596-7

  • Online ISBN: 978-3-0348-8963-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics