Skip to main content

Insertion Sequences as Genomic Markers

  • Chapter
Prokaryotic Genomics

Part of the book series: Methods and Tools in Biosciences and Medicine ((MTBM))

Abstract

Mobile genetic elements are widespread in almost all living organisms. This chapter will focus on insertion sequence (IS) elements, which are bacterial mobile genetic elements carrying genetic information devoted to their transposition and its regulation [1]. IS elements, and more generally mobile genetic elements, were first discovered by their ability to generate mutations [2, 3], and several studies suggested their significant contribution to spontaneous mutagenesis in bacteria [4, 5]. Transposition of an IS element can result in gene inactivation, polar effects [6, 7], activation of cryptic genes, and modification of gene expression (for review, see [1]). Besides these “simple” transposition events, IS elements can be involved in global restructuring of genomes, through homologous recombination events between homologous copies. Chromosomal rearrangements such as inversions, deletions, and duplications have been described [8, 9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mahillon J, Chandler M (1998) Insertion 6 sequences. Microbiol Mol Biol Rev 62: 725–774

    CAS  Google Scholar 

  2. McClintock B (1965) The control of gene expression in maize. Brookhaven Symp 7 Biol 18: 162–184

    Google Scholar 

  3. Starlinger P, Saedler H (1976) IS-elements in microorganisms. Curr Top Microbiol Immunol 75: 111–152

    CAS  Google Scholar 

  4. Lieb M (1981) A fine structure map of 8 spontaneous and induced mutations in the lambda repressor gene, including insertions of IS elements. Mol Gen Genet 184: 364–371

    Article  CAS  Google Scholar 

  5. Hall BG (1999) Spectra of spontaneous growth-dependent and adaptive mutations at ebgR. J Bacteriol 181: 1149–9 1155

    Google Scholar 

  6. Jordan E, Saedler H, Starlinger P (1968) 0° and strong polar mutations in the gal operon are insertions. Mol Gen Genet 102: 353–363

    Google Scholar 

  7. Saedler H, Reif HJ, Hu S, Davidson N (1974) IS2, a genetic element for turnoff and turn-on of gene activity in Escherichia coli. Mol Gen Genet 132: 265289

    Google Scholar 

  8. Deonier RC (1996) Native insertion sequence elements: locations, distributions, and sequence relationships. In: FC Neidhardt (eds): Escherichia coli and Salmonella: Cellular and molecular biology. ASM Press, Washington, DC,2000–2011

    Google Scholar 

  9. Louarn J-M, Bouche JP, Legendre F et al. (1985) Characterization and properties of very large inversions of the E. coli chromosome along the origin-to-terminus axes. Mol Gen Genet 201: 467–476

    Google Scholar 

  10. Fong KPY, Goh CBH, Tan H-M (2000) The genes for benzene catabolism in Pseudomonas putida ML2 are flanked by two copies of the insertion element IS1489, forming a class-I-type catabolic transposon, Tn5542. Plasmid 43: 103–110

    Article  CAS  Google Scholar 

  11. Garcia MI, Labigne A, Le Bouguenec C (1994) Nucleotide sequence of the afimbrial-adhesin-encoding afa-3 gene cluster and its translocation via flanking IS1 insertion sequences. J Bacteriol 176: 7601–7613

    CAS  Google Scholar 

  12. Sawyer SA, Dykhuizen DE, DuBose RF et al. (1987) Distribution and abundance of insertion sequences among natural isolates of Escherichia coli. Genetics 115: 51–63

    CAS  Google Scholar 

  13. Sreevatsan S, Pan X, Stockbauer KE, et al. (1997) Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci USA 94: 9869–9874

    Article  CAS  Google Scholar 

  14. Warren RM, Sampson SL, Richardson M, et al. (2000) Mapping of IS6110 flanking regions in clinical isolates of Mycobacterium tuberculosis demonstrates gen-orne plasticity. Mol Microbiol 37: 14051416

    Google Scholar 

  15. Naas T, Blot M, Fitch WM, Arber W (1994) Insertion sequence-related genetic variation in resting Escherichia coli K-12. Genetics 136: 721–730

    CAS  Google Scholar 

  16. Naas T, Blot M, Fitch WM, Arber W (1995) Dynamics of IS-related genetic rearrangements in resting Escherichia coli K-12. Mol Biol Evol 12: 198–207

    CAS  Google Scholar 

  17. Nichols BP, Shafiq 0, Meiners V (1998) Sequence analysis of Tn10 insertion sites in a collection of Escherichia coli strains used for genetic mapping and strain construction. J Bacteriol 180: 6408–6411

    CAS  Google Scholar 

  18. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. JBiol Chem 98: 503–517

    CAS  Google Scholar 

  19. Swofford DL (1993) PA UP: Phylogenetic analysis using parsimony. Illinois Natural History Survey, Champaign, IL, Version 3.1.1

    Google Scholar 

  20. Altschul S, Stephen F, Madden TL, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs Nucleic Acids Res 25: 3389–3402

    Article  CAS  Google Scholar 

  21. Lenski RE, Rose MR, Simpson SC, Tadler SC (1991) Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. Am Nat 138: 1315–1341

    Article  Google Scholar 

  22. Lenski RE, Mongold JA, Sniegowski PD, et al. (1998) Evolution of competitive fitness in experimental populations of Escherichia coli: what makes one genotype a better competitor than another? Antonie Leeuwenhoek 73: 35–47

    Article  CAS  Google Scholar 

  23. Papadopoulos D, Schneider D, MeierEiss J et al. (1999) Genomic evolution during a 10,000-generation experiment with bacteria. Proc Natl Acad Sci USA 96: 3807–3812

    Article  CAS  Google Scholar 

  24. Imhof M, Schlötterer C (2001) Fitness effects of advantageous mutations in evolving Escherichia coli populations. Proc Natl Acad Sci USA 98: 1113–1117

    Article  CAS  Google Scholar 

  25. Metzgar D, Thomas E, Davis C, Field D, Wills C (2001) The microsatellites of Escherichia coli: rapidly evolving repetitive DNAs in a non-pathogenic prokaryote. Mol Microbiol 39: 183–190

    Article  CAS  Google Scholar 

  26. Schneider D, Duperchy E, Coursange E et al. (2000) Long-term experimental evolution in Escherichia coli. IX. Characterization of insertion sequence-mediated mutations and rearrangements. Genetics 156: 477–488

    CAS  Google Scholar 

  27. Cooper VS, Schneider D, Blot M, Lenski RE (2001) Mechanisms causing rapid and parallel losses of ribose catabolism in evolving populations of Escherichia coli B. J Bacteriol 183: 2834–2841

    Article  CAS  Google Scholar 

  28. Helling RB, Vargas CN, Adams J (1987) Evolution of Escherichia coli during growth in a constant environment. Genetics 116: 349–358

    CAS  Google Scholar 

  29. Rosenzweig RF, Sharp RR, Treves DS, Adams J (1994) Microbial evolution in a simple unstructured environment: genetic differentiation in Escherichia coli. Genetics 137: 903–917

    CAS  Google Scholar 

  30. Treves DS, Manning S., Adams J (1998) Repeated evolution of an acetate-crossfeeding polymorphism in long-term populations of Escherichia coli. Mol Biol Evol 15: 789–797

    CAS  Google Scholar 

  31. Bennett AF, Lenski RE, Mittler JE (1992) Evolutionary adaptation to temperature.I. Fitness responses of Escherichia coli to changes in its thermal environment. Evolution 46: 16-30

    Google Scholar 

  32. Riehle MM, Bennett AF, Long AD (2001) Genetic architecture of thermal adaptation in Escherichia coli. Proc Natl Acad Sci USA 98: 525–530

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Schneider, D., Blot, M. (2003). Insertion Sequences as Genomic Markers. In: Blot, M. (eds) Prokaryotic Genomics. Methods and Tools in Biosciences and Medicine. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8963-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8963-6_3

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-6596-7

  • Online ISBN: 978-3-0348-8963-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics