Skip to main content

Genetic Mapping in Salmonella enterica

  • Chapter
Prokaryotic Genomics

Part of the book series: Methods and Tools in Biosciences and Medicine ((MTBM))

  • 234 Accesses

Abstract

Genetic mapping has been a major task of classical genetics. Ascribing mutations to genes, and genes to chromosomes, has required the development of a large number of tools, both experimental and analytical, that lie at the core of genetical thinking. With the advent of alternative (and often simpler) molecular methods, some such tools have become obsolete, at least in practice. Others, however, survive. This chapter describes two methods for genetic mapping currently used in the gram-negative bacterium Salmonella enterica, a close of Escherichia coli that remains a model organism in both bacterial genetics and microbial pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zinder ND, Lederberg J (1952) Genetic exchange in Salmonella. J Bacteriol 64: 679–699

    Article  CAS  Google Scholar 

  2. Sanderson KE, cLachlan PR (1987) F-mediated conjugation, P strains, and MaHfr strains of Salmonella typhimurium and Salmonella abony. In: FC Neidhardt, JL Ingraham, KB Low et al. (eds): Escherichia coli and Salmonella typhimurium: Cellular and molecular biology. ASM Press, Washington DC, 1138–1144

    Google Scholar 

  3. Margolin P (1987) Generalized transduction. In: FC Neidhardt, JL Ingraham, KB Low et al. (eds): Escherichia coli and Salmonella typhimurium: Cellular and molecular biology. ASM Press, Washington D C, 1154–1168

    Google Scholar 

  4. Maloy SR, Stewart VJ, Taylor RK (1996) Genetic analysis of pathogenic bacteria. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  5. Ahmer BMM, Tran M, Heffron F (1999) The virulence plasmid of Salmonella typhimurium is self-transmissible. J Bacteriol 181: 1364–1368

    CAS  Google Scholar 

  6. Smith HR, Humphreys GO, Grindley NDF, Anderson ES (1973) Molecular studies of a fi+ plasmid from strains of Salmonella typhimurium LT2. Mol Gen Genet 126: 143–151

    Article  CAS  Google Scholar 

  7. Lam S, Roth JR (1983) IS200: a Salmonella-specific insertion sequence. Cell 34: 951–960

    Article  CAS  Google Scholar 

  8. Chumley FG, Menzel R, Roth JR (1979) Hfr formation directed by Tn10. Genetics 91: 639–655

    CAS  Google Scholar 

  9. Chumley FG, Roth JR (1980) Rearrangement of the bacterial chromosome using Tn10 as a region of homology. Genetics 94: 1–14

    Google Scholar 

  10. Benson NR, Goldman B S (1992) Rapid mapping in Salmonella typhimurium with Mud-P22 prophages. J Bacteriol 174: 1673–1681

    CAS  Google Scholar 

  11. Youderian P, Sugiono P, Brewer KL, Higgins NP, Elliott TE (1988) Packaging specific fragments of the Salmonella chromosome with locked-in Mud-P22 prophages. Genetics 118: 581–592

    CAS  Google Scholar 

  12. Casjens S, Hayden M (1988) Analysis in vivo of the bacteriophage P22 headful nuclease. J Mol Biol 194: 411–422

    Article  Google Scholar 

  13. Bochner BR, Huang HC, Schieven GL, Ames BN (1980) Positive selection for loss of tetracycline resistance. J Bacteriol 143: 926–933

    CAS  Google Scholar 

  14. Maloy SR, Nunn WD (1981) Selection for loss of tetracycline resistance by Escherichia coli. J Bacteriol 145: 1110–1112; erratum 146: 831

    CAS  Google Scholar 

  15. Kleckner N, Roth J, Botstein D (1977) Genetic engineering in vivo using trans-locatable drug-resistant elements. New methods in bacterial genetics. JMol Biol 116: 125–159

    Article  CAS  Google Scholar 

  16. Camacho EM, Casadesus J (2001) Genetic mapping by duplication segregation in Salmonella enterica. Genetics 157: 491–502

    CAS  Google Scholar 

  17. Hughes KT, Roth JR (1985) Directed formation of deletions and duplications using Mud(Aplac). Genetics 109: 263–282

    CAS  Google Scholar 

  18. Schmieger H (1972) P22 mutants with increased or decreased transduction abilities. Mol Gen Genet 119: 75–88

    Article  CAS  Google Scholar 

  19. Kleckner N, Bender J, Gottesman S (1991) Uses of transposons with emphasis onTn1O. Meth Enzymol 204: 139–180

    Article  CAS  Google Scholar 

  20. Beuzon CR, Casadesus J (1997) Cloning with Mud-P22 hybrid prophages: mapping of IS200 elements on the chromosome of Salmonella typhimurium LT2. Mol Gen Genet 256: 586–588

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Casadesus, J., Camacho, E.M. (2003). Genetic Mapping in Salmonella enterica . In: Blot, M. (eds) Prokaryotic Genomics. Methods and Tools in Biosciences and Medicine. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8963-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8963-6_2

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-6596-7

  • Online ISBN: 978-3-0348-8963-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics