Skip to main content

Pharmacological Strategies for the Treatment of the Basic Defect in Cystic Fibrosis

  • Chapter
The Pediatric Lung

Abstract

Cystic fibrosis (CF), a common, lethal inherited disease of Caucasians, is a systemic exocrine disorder associated with a dysfunctional chloride channel that restricts or prevents the movement of chloride ions across the apical membrane of epithelial cells [1]. This results in elevated sodium and chloride levels in sweat and airway surface fluid, and in the abnormal composition and hydration of mucus [1–4]. Clinical presentations of the disease are widely heterogeneous, but patients commonly show a predisposition to chronic and fatal lung colonisation by bacterial pathogens such as P. aeruginosa and S. aureus [5]. Although there are important gastroenterological manifestations contributing to morbidity and mortality, the lung involvement is the primary cause of 95% of the mortality [6]. Infants who die from meconium ileus shortly after birth do not have macroscopic lung disease although histological abnormalities can be detected within a few days of life [7]. Lung disease develops over the first few years of life and leads to death, on average in the third decade, from chronic suppurative lung disease [8]. Since the CF gene was discovered in 1989 [9, 10], enormous progress has been made in the understanding of the basic defect and the changes that occur in CF. However, there is still much debate about how different genotypes, infection and inflammatory responses interact, and the exact process by which the genetically determined defect leads to extensive damage and irreversible failure of the lungs is not yet clear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Quinton P (1990) Cystic fibrosis: a disease in electrolyte transport. FASEB J 4: 2709–2717.

    CAS  PubMed  Google Scholar 

  2. Cheng P, Boat T, Cranfill K, Yankaskas JR, Boucher RC. (1989) Increased sulfation of glycoconjugates by cultured nasal epithelial cells from patients with cystic fibrosis. J Clin Invest 84: 68–72.

    CAS  PubMed  Google Scholar 

  3. Gilljam H, Ellin A, Strandvik B (1989) Increased bronchial chloride concentration in cystic fibrosis. Scand J Clin Lab Invest 49: 121–124.

    CAS  PubMed  Google Scholar 

  4. Joris L, Dab I, Quinton PM (1993) Elemental composition of human airway surface fluid in healthy and diseased airways. Am Rev Respin Dis 148: 1633–1637.

    CAS  Google Scholar 

  5. Konstan WM, Berger (1993) Infection and inflammation of the lung in cystic fibrosis. In: Davis PB (ed.), Cystic Fibrosis.New York: Marcel Dekker, 219–276.

    Google Scholar 

  6. Boat T, Welsh MJ, Beaudet A (1989) Cystic fibrosis. In: Scriver C, et al. (eds.). The metabolic basis of inherited disease. New York: McGraw Hill, 2649–2860.

    Google Scholar 

  7. Bedrossian CW, Greenberg SD, Singer DB, Hansen JJ, Rosenberg HS (1976) The lung in cystic fibrosis. A quantitative study including prevalence of pathologic findings among different age groups. Hum Pathol 7(2): 195–204.

    CAS  PubMed  Google Scholar 

  8. Phelan PD, Allan JL, Landau LI, Barnes GL (1979) Improved survival of patients with cystic fibrosis. Med J Aust 1(7): 261–263.

    CAS  PubMed  Google Scholar 

  9. Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, Dean M, Rozmahel R, Cole JL, Kennedy D, Hidaka N, et al. (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245(4922): 1059–1065.

    CAS  PubMed  Google Scholar 

  10. Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui LC (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245(4922): 1073–1080.

    CAS  PubMed  Google Scholar 

  11. Caplen NJ, Kinrade E, Sorgi F, Gao X, Gruenert D, Geddes D, Coutelle C, Huang L, Alton EWFW, Williamson R (1995 b) In vitro liposome-mediated DNA transfection of epithelial cell lines using the cationic liposome DC-Choi/DOPE. Gene Therapy 2: 603–613.

    CAS  Google Scholar 

  12. Crystal RG (1995) Transfer of genes to humans: Early lessons and obstacles to success. Science 270: 404–410.

    CAS  PubMed  Google Scholar 

  13. Zabner J, Fasbender AJ, Moninger T, Poellinger KA, Welsh MJ (1995) Cellular and molecular barriers to gene transfer by a cationic lipid.J Biol Chem270(32): 18997–19007.

    CAS  PubMed  Google Scholar 

  14. Zabner J, Couture LA, Gregory RJ, Graham SM, Smith AE, Welsh MJ (1993) Adenovirusmediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell 75(2): 207–216.

    CAS  PubMed  Google Scholar 

  15. Knowles MR, Hohneker KW, Zhou ZQ, Olsen JC, Noah TL, Hu PC, Leigh MW, Engelhardt JF, Edwards LJ, Jones KR, et al. (1995 a) A controlled study of adenoviral-vectormediated gene transfer in the nasal epithelium of patients with cystic fibrosis. New Engl J Med 333 (13): 823–831.

    CAS  Google Scholar 

  16. Porteous D, Dorin JR, McLachlan G, Davidsonsmith H, Davidson H, Stevenson BJ, Carothers AD, Wallace WAH, Moralee S, Hoenes C, et al. (1997) Evidence for safety and efficacy of DOTAP cationic liposome-mediated CFTR transfer to the nasal epithelium of patients with Cystic Fibrosis. Gene Therapy 4(3): 210–218.

    CAS  PubMed  Google Scholar 

  17. Boucher RC (1994) The genetics of cystic fibrosis: a paradigm for uncovering new drug targets. Curr Opin Biotechnol 5(6): 639–642.

    CAS  PubMed  Google Scholar 

  18. Smith JJ, Travis SM, Greenberg EP, Welsh MJ (1996 b) Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 85 (2): 229–236.

    CAS  Google Scholar 

  19. Egan M, Flotte T, Alfione S, Solow R, Zeitlin PL, Carter BJ, Guggino WB (1992) Defective regulation of outwardly rectifying chloride channels corrected by insertion of CFTR. Nature 358: 581–584.

    CAS  PubMed  Google Scholar 

  20. Reisin IL,Prat A,Abraham E,Amara JF,Gregory RJ,Ausiello DA,Cantiello HF(1992) Expression of CFTR results in the appearance of an ATP-conductive channel.Pediatr Pulmonol14: 262.

    Google Scholar 

  21. Schwiebert EM, Egan ME, Hwang TH, Fulmer SB, Allen SS, Cutting GR, Guggino WB (1995) CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATE Cell 81(7): 1063–1073.

    CAS  PubMed  Google Scholar 

  22. Reddy M, Quinton P, Haws C, Wine J, Grygorczyk R, Tabcharani JA, Hanrahan JW, Gunderson KL, Kopito RR (1996) Failure of the cystic fibrosis transmembrane conductance regulator to conduct ATP. Science 271(1876–1879).

    Google Scholar 

  23. Abraham EH, Okunieff P, Scala S, Vos P, Oosterveld MJS, Chen AY, Shrivastav B, Guidotti G (1997) Cystic fibrosis transmembrane conductance regulator and adenosine triphosphate. Science 275: 1324–1325.

    CAS  PubMed  Google Scholar 

  24. Reddy MM, Quinton PM, Haws C, Wine JJ, Grygorczyk R, Tabcharani JA, Hanrahan JW, Gunderson KL, Kopito RR (1997) Response to Abraham et al. (1997). Science 275: 1325.

    Google Scholar 

  25. Grygorczyk R, Hanrahan JW (1997) Response to Abraham et al. (1997). Science 275: 1326.

    Google Scholar 

  26. Boucher RC, Stutts MJ, Knowles MR, Cantley L, Gatzy JT (1986) Na+ transport in cystic fibrosis respiratory epithelia. Abnormal basal rate and response to adenylate cyclase activation. J Clin Invest 78 (5): 1245–1252.

    CAS  PubMed  Google Scholar 

  27. Stutts MJ, Canessa CM, Olsen JC, Hamrick M, Cohn JA, Rossier BC, Boucher RC (1995) CFTR as a cAMP-dependent regulator of sodium channels. Science 269(5225): 847–850.

    CAS  PubMed  Google Scholar 

  28. Barasch J, Kiss B, Prince A, Saiman L, Gruenert D, Al-Awqati Q (1991) Defective acidification of intracellular organelles in cystic fibrosis. Nature 352: 70–73.

    CAS  PubMed  Google Scholar 

  29. Barasch J, Landry D, Al-Awqati Q (1993) The Chloride Channel ofIntracellular Organelles and its Potential Role in Cystic Fibrosis. In: Dodge JA, Brock D, and Widdicombe J (eds.). Cystic Fibrosis-Current Topics. Chichester: John Wiley & Sons, 191–217.

    Google Scholar 

  30. Ames GF, Lecar H (1992) ATP-dependent bacterial transporters and cystic fibrosis: analogy between channels and transporters. FASEB J 6 9: 2660–2666.

    CAS  PubMed  Google Scholar 

  31. Hyde SC, Emsley P Hartshorn MJ, Mimmack MM, Gileadi U, Pearce SR, Gallagher MP, Gill DR, Hubbard RE, Higgins CF (1990) Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature 346(6282): 362–365.

    CAS  PubMed  Google Scholar 

  32. Gros P, Croop J, Houseman D (1986a) Mammalian multidrug resistance gene: Complete cDNA sequence indicates strong homology to bacterial transport proteins. Cell 47: 371–380.

    CAS  Google Scholar 

  33. Hess J, Wels W, Vogel M, Goebel W (1986) Analysis of haemolysin secretion system by PhoA-HIgA fusion proteins. FEMS Microbiol Lett 34: 201–208.

    Google Scholar 

  34. Manavalan P, Smith A, McPherson J (1993) Sequence and structural homology among membrane-associated domains of CFTR and certain transporter proteins. JProtein Chem 12(3): 279–290.

    CAS  Google Scholar 

  35. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Playsic N, Chou JL, et al. (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245(4922): 1066–1073.

    CAS  PubMed  Google Scholar 

  36. Ko Y, Thomas P, Pedersen P (1994) The cystic fibrosis transmembrane conductance regulator-nucleotide binding to a synthetic peptide segment from the second nucleotide binding fold. JBiol Chem 269(20): 14584–14588.

    CAS  Google Scholar 

  37. Kerem BS, Zielenski J, Markiewicz D, Bozon D, Gazit E, Yahav J, Kennedy D, Riordan JR, Collins FS, Rommens JM, et al. (1990) Identification of mutations in regions corresponding to the two putative nucleotide (ATP)-binding folds of the cystic fibrosis gene. Proc Natl Acad Sci USA 87(21): 8447–8451

    CAS  PubMed  Google Scholar 

  38. Anderson MP, Berger HA, Rich DP, Gregory RJ, Smith AE, Welsh MJ (1991) Nucleoside triphosphates are required to open the CFTR chloride channel. Cell 67(4): 775–84.

    CAS  PubMed  Google Scholar 

  39. Cheng SH, Rich DP, Marshall J, Gregory RJ, Welsh MJ, Smith AE (1991) Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell 66: 1027–1036.

    CAS  PubMed  Google Scholar 

  40. Bear CE, Li C, Kartner N, Bridges RJ, Jensen TJ, Ramjeesingh M, Riordan JR (1992) Purification and functional reconstitution of the cystic fibrosis transmembrane regulator. Cell 68: 809–818.

    CAS  PubMed  Google Scholar 

  41. Smit LS, Wilkinson DJ, Mansoura MK, Collins FS, Dawson DC (1993) Functional roles of the nucleotide binding folds in the activation of the cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci USA 90: 9963–9967.

    CAS  PubMed  Google Scholar 

  42. Carson MR, Travis SM, Welsh MJ (1995 a) The two nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator (CFTR) have distinct functions in controlling channel activity. JBio1 Chem 270(4): 1711–1717.

    CAS  Google Scholar 

  43. Wilkinson DJ, Mansoura MK, Watson PY, Smit LS, Collins FS, Dawson DC (1996) CFTR: the nucleotide binding folds regulate the accessibility and stability of the active state. J Gen Physiol 107: 103–119.

    CAS  PubMed  Google Scholar 

  44. Shoshani T, Augarten A, Gazit E, Bashan N, Yahav Y, Rivlin Y, Ta1 A, Seret H, Yaar L, Kerem E, et al. (1992) Association of a nonsense mutation (W1282X), the most common mutation in the Ashkenazi Jewish cystic fibrosis patients in Israel, with presentation of severe disease. Am J§¯um Genet 50(1): 222–228.

    CAS  Google Scholar 

  45. Cutting GR, Kasch LM, Rosenstein BJ, Zielenski J, Tsui LC, Antonarakis SE, Kazazian HJ (1990) A cluster of cystic fibrosis mutations in the first nucleotide-binding fold of the cystic fibrosis conductance regulator protein [see comments]. Nature 346(6282): 366–369.

    CAS  PubMed  Google Scholar 

  46. Wels MJ, Smith AE (1993) Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73: 1251–1254.

    Google Scholar 

  47. Cheng SH, Gregory RJ, Marshall J, Paul S, Souza DW, White GA, O’Riordan CR, Smith AE (1990) Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63 (4): 827–834.

    CAS  PubMed  Google Scholar 

  48. Gregory RJ, Rich DP, Cheng SH, Souza DW, Paul S, Manavalan P, Anderson MP, Welsh MJ, Smith AE (1991) Maturation and function of cystic fibrosis transmembrane conductance regulator variants bearing mutations in putative nucleotide-binding domains 1 and 2. M§àl§Ö§ã Cell Biol 11(8): 3886–3893.

    CAS  Google Scholar 

  49. Denning GM, Anderson MP, Amara J, Marshall J, Smith AE, Welsh MJ (1992 c) Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature sensitive. Nature 358: 761–764.

    CAS  Google Scholar 

  50. Marshall J, Fang S, Ostedgaard LS, O’Riordan CR, Ferrara D, Amara JF, Hoppe HT, Scheule RK, Welsh MJ, Smith AE (1994) Stoichiometry of recombinant cystic fibrosis transmembrane conductance regulator in epithelial cells and its functional reconstitution into cells in vitro. JBiol Chem 269(4): 2987–2995.

    CAS  Google Scholar 

  51. Kartner N, Augustinas O, Jensen TJ, Naismith AL, Riordan JR (1992) Mislocalization of delta F508 CFTR in cystic fibrosis sweat gland. Nat Genet 1(5): 321–327.

    CAS  PubMed  Google Scholar 

  52. Yang Y, Janich S, Cohn J, Wilson J (1993) The common variant of cystic fibrosis trans-membrane regulator is recognised by hsp70 and degraded in a pre-Golgi nonlysosomal compartment. Proc Natl Acad Sci USA 90: 9480–9484.

    CAS  PubMed  Google Scholar 

  53. Pind S, Riordan J, Williams D (1994) Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 269: 12784–12788.

    CAS  PubMed  Google Scholar 

  54. Dalemans W, Barbry P, Champigny G, Jallat S, Dott K, Dreyer D, Crystal RG, Pavirani A, Lecocq JP, Lazdunski M (1991) Altered chloride ion channel kinetics associated with the deltaF508 cystic fibrosis mutation. Nature 354(6354): 526–528.

    CAS  PubMed  Google Scholar 

  55. Drumm ML, Wilkinson DJ, Smit LS, Worrell RT, Strong TV, Frizzell RA, Dawson DC, Collins FS (1991) Chloride conductance expressed by §¡F508 and other mutant CFTRs in Xenopus oocytes. Science 254(5039): 1797–1799.

    CAS  PubMed  Google Scholar 

  56. Tsui L-C (1992) The spectrum of cystic fibrosis mutations. Trends Genet 8(11): 392–398.

    CAS  PubMed  Google Scholar 

  57. Waters D, Dorney S, Gruca M, Martin H, Howmangiles R, Kan A, Desilva M, Gaskin K (1995) Hepatobiliary disease in cystic fibrosis patients with pancreatic sufficieny. Hepatology 21(4): 963–969.

    CAS  PubMed  Google Scholar 

  58. Dork T, Wulbrand U, Richter T, Neumann T, Wolfes H, Wulf B, Maass G, Tummler B (1991) Cystic fibrosis with three mutations in the cystic fibrosis transmembrane conductance regulator gene. Hum Genet 87(4): 441–446.

    CAS  PubMed  Google Scholar 

  59. Teem J, Carson M, Welsh M (1996) Mutation of R555 in CFTR-delta-F508 enhances function and partially corrects defective processing. Receptors and Channels 4(1): 63–72.

    CAS  PubMed  Google Scholar 

  60. Cuppens H, Margen P, De Boeck C, De Baets F, Eggermont E, Van den Berghe H, Cassiman JJ (1990) A child, homozygous for a stop codon in exon 11, shows milder cystic fibrosis symptoms than her heterozygous nephew. J Med Genet 27(11): 717–719.

    CAS  PubMed  Google Scholar 

  61. Devoto M, Ronchetto P, Fanen P, Orriols JJ, Romeo G, Goossens M, Ferrari M, Magnani C, Seia M, Cremonesi L (1991) Screening for non-delta F508 mutations in five exons of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in Italy. Am J Hum Genet 48 (6): 1127–1132.

    CAS  PubMed  Google Scholar 

  62. Beaudet AL (1992) Genetic testing for cystic fibrosis. Pediatr Clin North Am 39(2): 213–228.

    CAS  PubMed  Google Scholar 

  63. Logan J, Hiestand D, Daram P, Huang Z, Muccio DD, Hartman J, Haley B, Cook WJ, Sorscher EJ (1994) Cystic fibrosis transmembrane conductance regulator mutations that disrupt nucleotide binding. J Clin Invest 94(1): 228–236.

    CAS  PubMed  Google Scholar 

  64. Prince LS, Workman RJ, Marchase RB (1994) Rapid endocytosis of the cystic fibrosis transmembrane conductance regulator chloride channel. Proc Natl Acad Sci USA 91(11): 5192–5196.

    CAS  PubMed  Google Scholar 

  65. Anderson MP, Gregory RJ, Thomspon S, Souza DW, Sucharita P, Mulligan RC, Smith AE, Welsh MJ (1991 b) Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science 253: 202–207.

    CAS  Google Scholar 

  66. Gasparini P, Nunes V, Savoia A, Dognini M, Morral N, Gaona A, Bonizzato A, Chillon M, Sangiuolo F, Novelli G, et al. (1991) The search for south European cystic fibrosis mutations: identification of two new mutations, four variants, and intronic sequences. Genomics 10(1): 193–200.

    CAS  PubMed  Google Scholar 

  67. Dean M, White MB, Amos J, Gerrard B, Stewart C, Khaw KT, Leppert M (1990) Multiple mutations in highly conserved residues are found in mildly affected cystic fibrosis patients. Cell 61(5): 863–870.

    CAS  PubMed  Google Scholar 

  68. Sheppard DD, Rich DP, Ostedgaard LS, Gregory RJ, Smith AE, Welsh MJ (1993) Mutations in CFTR associated with mild-disease-form Cl-channels with altered pore properties. Nature 362: 160–164.

    CAS  PubMed  Google Scholar 

  69. Welsh MJ, Tsui, L-C, Boat TF, Beaudet AL (1995b) Cystic Fibrosis. In: C.R. Scriver, et al. (eds.). The Metabolic and Molecular Bases of Inherited Disease. New York: McGraw-Hill, 3799–3876.

    Google Scholar 

  70. Armstrong DS, Grimwood K, Carzino R, Carlin JB, Olinsky A, Phelan PD (1995) Lower respiratory infection and inflammation in infants with newly diagnosed cystic fibrosis. British Medical Journal 310: 1571–1572.

    CAS  PubMed  Google Scholar 

  71. Armstrong DS, Grimwood K, Carlin JHB (1996) Bronchoalveolar lavage or oropharyngeal cultures to identify lower respiratory pathogens in infants with cystic fibrosis. Pediatric Pulmonology 21: 267–275.

    CAS  PubMed  Google Scholar 

  72. Goldman MJ, Anderson GM, Stolzenberg ED, Kari UP, Zasloff M, Wilson JM (1997) Human b-Defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88: 553–560.

    CAS  PubMed  Google Scholar 

  73. Martin E, Ganz T, Lehrer RI (1995) Defensins and other endogenous peptide antibiotics of vertebrates. J Leuk Biol 58 (2): 128–136.

    CAS  Google Scholar 

  74. Dorin JR, Farley R, Webb S, Smith SN, Farini E, Delaney SJ, Wainwright BJ, Alton E, Porteous DJ (1996) A demonstration using mouse models that successful gene therapy for cystic fibrosis requires only partial gene correction. Gene Therapy 3(9): 797–801.

    CAS  PubMed  Google Scholar 

  75. Johnson LG, Olsen JC, Sarkadi B, Moore KL, Swanstrom R, Boucher RC (1992) Efficiency of gene transfer for restoration of normal airway epithelial function in cystic fibrosis. Nat Genet 2(1): 21–25.

    CAS  PubMed  Google Scholar 

  76. Howard M, Frizzell RA, Bedwell DM (1996) Aminoglycoside antibiotics restore CFTR function by suppressing premature stop mutations. Nature Med 2: 467–469.

    CAS  PubMed  Google Scholar 

  77. Abeliovich D, Lavon IP, Lerer I, Cohen T, Springer C, Avital A, Cutting GR (1992) Screening for five mutations detects 97% of cystic fibrosis (CF) chromosomes and predicts a carrier frequency of 1:29 in the Jewish Ashkenazi population [see comments]. Am J Hum Genet 51(5): 951–956.

    CAS  PubMed  Google Scholar 

  78. Jensen TJ, Loo MA, Pind S, Williams DB, Goldberg AL, Riordan JR (1995) Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83(1): 129–135.

    CAS  PubMed  Google Scholar 

  79. Ward CL, Omura S, Kopito RR (1995) Degradation of CFTR by the ubiquitinproteasome pathway. Cell 83(1): 121–127.

    CAS  PubMed  Google Scholar 

  80. Brown CR, Hong-Brown LQ, Welch WJ (1997) Correcting temperature-sensitive protein folding defects. J Clin Invest 99(6): 1432–1444.

    CAS  PubMed  Google Scholar 

  81. Sato S, Ward CL, Krouse ME, Wine JJ, Kopito RR (1996) Glycerol reverses the mis-folding phenotype of the most common cystic fibrosis mutation. J Biol Chem 271(2): 635–638.

    CAS  PubMed  Google Scholar 

  82. Cheng S, Fang S, Zabner J, Marshal J, Piraino S, Schiavi SC, Jefferson D, Welsh M, Smith A (1995) Functional activation of the cystic fibrosis trafficking mutant delta F508-CFTR by overexpression. Am J Physiol-Lung Cell Molec Physiol 12(4): L615–L624.

    Google Scholar 

  83. Haws CM, Nepomuceno IB, Krouse ME, Wakelee H, Law T, Xia Y, Nguyen H, Wine JJ (1996) Delta F508-CFTR channels: kinetics, activation by forskolin, and potentiation by xanthines.Am J Physiol 270(5 Pt 1): Cl544–1555.

    Google Scholar 

  84. Reddy MM, Quinton PM (1996) Deactivation of CFTR-Cl conductance by endogenous phosphatases in the native sweat duct. Am J Physiol 270(2 Pt 1): C474–80.

    CAS  PubMed  Google Scholar 

  85. Reenstra WW, Yurko Mauro K, Dam A, Raman S, Shorten S (1996) CFTR chloride channel activation by genistein: the role of serine/threonine protein phosphatases. Am J Physiol 271(2 Pt 1): C650–7.

    CAS  PubMed  Google Scholar 

  86. Becq F, Jensen TJ, Chang XB, Savoia A, Rommens JM, Tsui LC, Buchwald M, Riordan JR, Haivahan JW (1994) Phosphatase inhibitors activate normal and defective CFTR chloride channels. Proc Natl Acad Sci USA 91(19): 9160–9164.

    CAS  PubMed  Google Scholar 

  87. Becq F, Fanjul M, Mahieu I, Berger Z, Gola M, Hollande E (1992) Anion channels in a human pancreatic cancer cell line (Capan-l) of ductal origin. Pflugers Archiv - Eur J Physiol 420 (1): 46–53.

    CAS  Google Scholar 

  88. Becq F, Verrier B, Chang XB, Riordan JR, Hanrahan JW (1996) cAMP- and Ca2+-independent activation of cystic fibrosis transmembrane conductance regulator channels by phenylimidazothiazole drugs. J Biol Chem 271(27): 16171–9 *LHM: Herston Medical, Biological Sciences, PA Hospital *LHC: QP501.J7.

    CAS  PubMed  Google Scholar 

  89. Logan J, Hiestand D, Daram P, Huang Z, Muccio DD, Hartman J, Haley B, Cook WJ, Sorscher EJ (1994) Cystic fibrosis transmembrane conductance regulator mutations that disrupt nucleotide binding. J Clin Invest 94(1): 228–236.

    CAS  PubMed  Google Scholar 

  90. Tilly BC, Winter MC, Ostedgaard LS, O’Riordan C, Smith AE, Welsh MJ. (1992) Cyclic AMP-dependent protein kinase activation of cystic fibrosis transmembrane conductance regulator chloride channels in planar lipid bilayers. J Biol Chem 267(14): 9470–9473.

    CAS  PubMed  Google Scholar 

  91. Gadsby DC, Hwang TC, Baukrowitz T, Nagel G, Horie M, Nairn AC (1994) Regulation of CFTR channel gating. Jpn JPhysiol 44, Suppl 2: 8183–192.

    Google Scholar 

  92. French PJ, Bijman J, Edixhoven M, Vaandrager AB, Scholte BJ, Lohmann SM, Nairn AC, de Jonge HR (1995) Isotype-specific activation of cystic fibrosis transmembrane conductance regulator-chloride channels by cGMP-dependent protein kinase II. J Biol Chem 270 (44): 26626–26 631.

    CAS  PubMed  Google Scholar 

  93. Illek B, Fischer H, Santos GF, Widdicombe JH, Machen TE, Reenstra WW (1995) cAMPindependent activation of CFTR Cl channels by the tyrosine kinase inhibitor genistein. Am J Physiol 268 (4 Pt 1): 886–893.

    Google Scholar 

  94. Shuba LM, Asai T, Pelzer S, McDonald TF (1996) Activation of cardiac chloride conductance by the tyrosine kinase inhibitor, genistein. Br J Pharmacol 119(2): 335–345.

    CAS  PubMed  Google Scholar 

  95. Yang IC, Cheng TH, Wang F, Price EM, Hwang TC (1997) Modulation of CFTR chloride channels by calyculin A and genistein.Am JPhysiol 272 (1 Pt 1): C 142–155.

    CAS  Google Scholar 

  96. Delaney SJ, Alton EWFW, Smith S, Lunn D, Farley R, Lovelock PK, Thomson SA, Hume DA, Lamb D, Porteous DJ, et al. (1996) Cystic fibrosis mice carrying the missense mutation G551D replicate human genotype-phenotype correlations. EMBO J 15: 955–963.

    CAS  PubMed  Google Scholar 

  97. Colledge WH, Abella BS, Southern KW, Ratcliff R, Jiang CW, Cheng SH, Macvinish LJ, Anderson JR, Cuthbert AW, Evans MJ (1995) Generation and characterization of a d§ÖltaF508 cystic fibrosis mouse model. Nature Genet 10(4): 445–452.

    CAS  PubMed  Google Scholar 

  98. Zeiher BG, Eichwald E, Zabner J, Smith JJ, Puga AP, Mccray PB, Capecchi MR, Welsh MJ, Thomas KR (1995) A mouse model for the delta-F508 allele of cystic fibrosis. JClin Invest 96 (4): 2051–2064.

    CAS  PubMed  Google Scholar 

  99. Knowles MR, Stotts MJ, Yankaskas JR, Gatzy JT, Boucher RC, Jr (1986) Abnormal respiratory epithelial ion transport in cystic fibrosis. Clin Chest Med 7(2): 285–297.

    CAS  PubMed  Google Scholar 

  100. Knowles MR, Stuffs MJ, Spock A, Fischer N, Gatzy JT, Boucher RC (1983) Abnormal ion permeation through cystic fibrosis respiratory epithelium. Science 221(4615): 1067–1070.

    CAS  PubMed  Google Scholar 

  101. Tomkiewicz R, App E, Zayas J, Ramirez O, Church N, Boucher RC, Knowles MR, King M (1993) Amiloride inhalation therapy in cystic fibrosis-influence on ion content, hydration and rheology of sputum. Am Rev Respir Dis 148(4): 1002–1007.

    CAS  PubMed  Google Scholar 

  102. Smith JJ, Karp PH, Welsh MJ (1994) Defective fluid transport by cystic fibrosis airway epithelia. J Clin Invest 93(3): 1307–1311.

    CAS  PubMed  Google Scholar 

  103. Knowles MR, Church NL, Waltner WE, Yankaskas JR, Gilligan P. King M, Edwards LJ, Helms RW, Boucher RC (1990) A pilot study of aerosolized amiloride for the treatment of lung disease in cystic fibrosis [see comments]. N Engl J Med 322(17): 1189–1194.

    CAS  PubMed  Google Scholar 

  104. Graham A, Hasani A, Alton EW, Martin GP, Marriott C, Hodson ME, Clarke SW, Geddes DM (1993) No added benefit from nebulized amiloride in patients with cystic fibrosis. Eur Respir J 6 (9): 1243–1248.

    CAS  PubMed  Google Scholar 

  105. Knowles MR, Clarke LL, Boucher RC (1991) Activation by extracellular nucleotides of chloride secretion in the airway epithelia of patients with cystic fibrosis [see comments]. NEngl JMed 325(8): 533–538.

    CAS  Google Scholar 

  106. Cantiello HF, Prat AG, Reisin IL, Ercole LB, Abraham EH, Amara JF, Gregory RJ, Ausiello DA (1994) External ATP and its analogs activate the cystic fibrosis trans-membrane conductance regulator by a cyclic AMP-independent mechanism. JBiol Chem 269(15): 11224–11232.

    CAS  Google Scholar 

  107. Hwang TH, Schwiebert EM, Guggino WB (1996) Apical and basolateral ATP stimulates tracheal epithelial chloride secretion via multiple purinergic receptors. Am J Physiol 270(6pt 1): C1611–1623.

    CAS  PubMed  Google Scholar 

  108. Olivier KN, Bennett WD, Hohneker KW, Zeman KU, Edwards LJ, Boucher RC, Knowles MR (1996) Acute safety and effects on mucociliary clearance of aerosolized uridine 5’-triphosphate ± amiloride in normal human adults. Am JRespir Crit Care Med 154(1): 217–223.

    CAS  Google Scholar 

  109. Bennett WD, Olivier KN, Zeman KU, Hohneker KW, Boucher RC, Knowles MR (1996) Effect of uridine 5’-triphosphate plus amiloride on mucociliary clearance in adult cystic fibrosis. Am J Respir Crit Care Med 153 (6 Pt 1): 1796–1801.

    CAS  PubMed  Google Scholar 

  110. Lazarowski ER, Watt WC, Stutts MJ, Brown HA, Boucher RC, Harden TK (1996) Enzymatic synthesis of UTP gamma S, a potent hydrolysis resistant agonist of P2U-purinoceptors. Br J Pharmacol 117(1): 203–209.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Basel AG

About this chapter

Cite this chapter

Wainwright, B., Lovelock, P., Wainwright, C. (1997). Pharmacological Strategies for the Treatment of the Basic Defect in Cystic Fibrosis. In: Wilmott, R.W. (eds) The Pediatric Lung. Respiratory Pharmacology and Pharmacotherapy. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8960-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8960-5_13

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9845-4

  • Online ISBN: 978-3-0348-8960-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics