Skip to main content

Aerosol Delivery Systems in Children

  • Chapter
Book cover The Pediatric Lung

Abstract

Over the last 30 years, the use of aerosols to deliver drugs to the respiratory tract has become well established. For diseases such as asthma, the great majority of children can now be treated solely via aerosol therapy. This revolution in drug delivery has been associated with a variety of different systems to deliver inhalation therapy. These systems include devices such as pressurised metered dose inhalers (pMDIs) attached to spacers and dry powder inhalers (DPIs), which are becoming steadily more refined and can now be employed in children of any age. The newer methods are likely to replace nebuliser delivery systems. Development of delivery techniques is continuing, particularly with pMDIs, due to the gradual phasing out of chlorofluorocarbons (CFCs) and replacement with hydrofluroalkanes (HFAs). Over the next few years, devices which are cheaper, more efficient and easier to use are likely to replace or augment current inhalation systems.

Author for correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Selroos O (1993) Bronchial asthma, chronic bronchitis and pulmonary parenchymal diseases. In: Moren F, Dolovich MB, Newhouse MT, Newman SP (eds) Aerosols in Medicine: Principles, Diagnosis and Therapy. Amsterdam: Elsevier, 261–290.

    Google Scholar 

  2. Ramsey BW, Dorkin HL, Eisenberg JD, Gibson RL, Harwood IR, Kravitz RM, et al. (1993) Efficacy of aerosolized tobramycin in patients with cystic fibrosis. N Engl J Med 328: 1740–1746.

    Article  PubMed  CAS  Google Scholar 

  3. Shak S, Capon DJ, Hellmis R, Marsters SA, Baker CL (1990) Recombinant human DNase 1 reduces the viscosity of cystic fibrosis sputum. Proc Natl Acad Sci USA 87: 9188–9192.

    Article  PubMed  CAS  Google Scholar 

  4. Geelhoed GC, Macdonald WB (1994) Comparison of oral and inhaled steroids in the treatment of croup. Am J Respir Crit Care Med 149: A375.

    Google Scholar 

  5. La Force WR, Brudno DS (1993) Controlled trial of beclomethasone diproprionate by nebulisation in oxygen-dependent and ventilator-dependent infants. J Pediatr 122: 285–288.

    Article  Google Scholar 

  6. Byron PR, Patton JS (1994) Drug delivery via the respiratory tract. J Aerosol Med 7: 49–75.

    Article  CAS  Google Scholar 

  7. Heyder J (1991) Definition of an aerosol. J Aerosol Med 4: 217–221.

    Article  Google Scholar 

  8. Gonda I (1992) Physical aspects of inhalation therapy in asthma. Patient Management 62–66.

    Google Scholar 

  9. Zainudin BMZ (1993) Therapeutic aerosol: Principles and practices. Med J Malaysia 48: 259–268.

    PubMed  CAS  Google Scholar 

  10. Dolovich M (1989) Physical principles underlying aerosol therapy. J Aerosol Med 2: 171–186.

    Article  Google Scholar 

  11. Gonda I (1990) Aerosols for delivery of therapeutic and diagnostic agents to the respiratory tract. Crit Rev Therap Drug Carrier Sys 6: 273–313.

    CAS  Google Scholar 

  12. Gonda I (1981) Study of the effects of polydispersity of aerosols on regional deposition in the respiratory tract. J Pharm Pharmacol 33: 52P.

    Article  Google Scholar 

  13. Edman P (1994) Pharmaceutical formulations - suspensions and solutions. J Aerosol Med 7: S3–S6.

    CAS  Google Scholar 

  14. Laurenco RV, Cotromanes E (1982) Clinical Aerosols: I. Characterisation of aerosols and their diagnostic uses. Arch Intern Med 142: 2163–2172.

    Article  Google Scholar 

  15. Pavia D, Thomson M, Shannon HS (1977) Aerosol inhalation and depth of deposition in the human lung: The effect of airway obstruction and tidal volume inhaled. Arch Environ Health 32: 131–137.

    PubMed  CAS  Google Scholar 

  16. Gonda I, Kayes JB, Groom CV, Fildes FJT (1981) Characterisation of hygroscopic inhalation aerosols. In: Stanley-Wood NG, Allen T (eds) Particle size analysis 1981: Proceedings of the fourth particle size analysis conference. Chichester: Wiley Beyden, 31–43.

    Google Scholar 

  17. Borgstrom L, Newman SP, Weisz A, Moren F (1992). Pulmonary deposition of inhaled Terbutaline: Comparison of scanning gamma camera and urinary excretion methods. J Pharm Sci 81: 753–755.

    Article  CAS  Google Scholar 

  18. Borgstrom L, Bondeson E, Moren F, Newman SP (1994) Lung deposition of budesonide inhaled via Turbuhaler. A comparison with terbutaline sulphate. Eur Respir J 7: 69–73.

    Article  PubMed  CAS  Google Scholar 

  19. Newman SP, Pellow PGD, Clark SW (1986) Droplet size distributions of nebulised aerosols for inhalation therapy. Clin Phys Physiol Meas 7: 139–146.

    Article  PubMed  CAS  Google Scholar 

  20. Clark AR (1993) MDIs: Physics of aerosol formulation. J Aerosol Med 6: 131.

    Google Scholar 

  21. Hickey AJ, Gonda, I, Irwin WJ, Fildes FJT (1990) Effect of hydrophobic coating on the behaviour of a hygroscopic aerosol powder in an environment of controlled temperature and relative humidity. J Pharm Sci 79: 1009–1014.

    Article  CAS  Google Scholar 

  22. Ferron GA, Kerreijn KF, Weber J (1976) Properties of aerosols produced with three nebulisers. Am Rev Respir Dis 114: 899–908.

    PubMed  CAS  Google Scholar 

  23. Chua HL, Collis GG, Newbury AM, Chan K, Bower GD, Sly PD, Le Souëf PN (1994) The influence of age on aerosol deposition in children with cystic fibrosis. Eur Respir J 7: 2185–2191.

    Article  PubMed  CAS  Google Scholar 

  24. Mallol J, Rattray S, Walker G, Cook D, Robertson CF (1996) Aerosol deposition in infants with cystic fibrosis. Pediatr Pulmonol 21: 276–281.

    Article  PubMed  CAS  Google Scholar 

  25. Newman SP, Clark AR, Talee N, Clarke SW (1989) Pressurised aerosol deposition in the human lung with and without an open spacer device. Thorax 44: 706–710.

    Article  PubMed  CAS  Google Scholar 

  26. Summers QA, Clar AR, Hollingworth A, Fleming J, Holgate ST (1990) The preparation of a radiolabelled aerosol of nedocromil sodium for administration by metered dose inhaler that accurately preserves particle size distribution of the drug. Drug Invest 2: 107–112.

    Article  Google Scholar 

  27. Biddiscombe MF, Melchor R, Mak VHF, Marriott RJ, Taylor AJ, Short MD, Spiro SG (1993) The lung deposition of salbutamol, directly labelled with technetium-99m, delivered by pressurised metered dose and dry powder inhalers. Int J Pharm 91: 111–121.

    Article  CAS  Google Scholar 

  28. Kohler D, Fleischer W, Matthys H (1988) New method for the easy labelling of β2-agonists in the metered dose inhaler with technetium-99m. Respiration 53: 65–73.

    Article  PubMed  CAS  Google Scholar 

  29. Farr SJ (1996) The physico-chemical basis of radiolabelling metered dose inhalers with 99mTc. J Aerosol Med 9: S27–S36.

    Google Scholar 

  30. Everard ML (1994) Studies using radiolabelled aerosols in children. Thorax 49: 1259–1266.

    Article  PubMed  CAS  Google Scholar 

  31. Everard ML, Hardy JG, Milner AD (1993) Comparison of nebulized aerosol deposition in the lungs of healthy adults following oral and nasal inhalation. Thorax 48: 1045–1046.

    Article  PubMed  CAS  Google Scholar 

  32. Collis GG, Cole HC, Le Souëf PN (1990) Dilution of nebulized aerosols by air entrainment in children. Lancet 336: 341–343.

    Article  PubMed  CAS  Google Scholar 

  33. Barry PW, O’Callaghan C (1996) The effect of breathing pattern on the clearance of aerosol from spacers. Eur Respir J 9: 432S.

    Google Scholar 

  34. Everard ML, Clark AR, Milner AD (1992) Drug delivery from holding chambers with attached face mask. Arch Dis Child 67: 580–585.

    Article  PubMed  CAS  Google Scholar 

  35. O’Callaghan C, Lynch J, Cant M, Robertson C (1993) Improvement in sodium cromoglycate delivery from a spacer device by use of an antistatic lining, immediate inhalation, and avoiding multiple actuations of drug. Thorax 48: 603–606.

    Article  PubMed  Google Scholar 

  36. Seddon PC, Heaf DP (1990) How well do children use dry powder inhalers? Thorax45: 818.

    Google Scholar 

  37. Le Souëf PN (1992) Validity of airway responsiveness testing in children. Lancet 339: 1282–1284.

    Article  PubMed  Google Scholar 

  38. Tanner JM, Whitehouse RH (1976) Longitudinal standards for height, weight, height velocity and stages of puberty. Arch Dis Child 51: 170–179.

    Article  PubMed  CAS  Google Scholar 

  39. Godfrey S, Baum JD (1979) Clinical Paediatric Physiology. Oxford: Blackwell.

    Google Scholar 

  40. Dunnill MS (1962) Postnatal growth in the lung. Thorax 17: 329–333.

    Article  Google Scholar 

  41. Le Souëf PN (1993) Can measurements of airway responsiveness be standardized in children? Eur Respir J 6: 1085–1087.

    PubMed  Google Scholar 

  42. Turner DJ, Landau LI, Le Souëf PN (1993) The effect of age on bronchodilator responsiveness. Pediatr Pulmonol 15: 98–104.

    Article  PubMed  CAS  Google Scholar 

  43. Le Souëf PN, Sears MR, Sherrill D (1995) The effect of size and age of subject on airway responsiveness in children. Am J Respir Crit Care Med 152: 576–579.

    PubMed  Google Scholar 

  44. Stick SM, Turnbull S, Chual HL, Landau LI, Le Souëf PN (1990) Comparison of airway responsiveness to histamine between infants and older children. Am Rev Respir Dis 142: 1143–1146.

    PubMed  CAS  Google Scholar 

  45. Harding SM (1990) The human pharmacology of fluticasone proprionate. Respir Med84 (Suppl A): 25–29.

    Article  PubMed  Google Scholar 

  46. Konig P (1985) Spacer devices used with metered-dose inhalers, break through or gimmick?Chest 88: 276–284.

    Article  PubMed  CAS  Google Scholar 

  47. Newhouse MT, Dolovich MB (1986) Control of asthma by aerosols. N Engl J Med 14: 870–874.

    Article  Google Scholar 

  48. Newman SP, Pavia D, Garland N, Clarke SW (1982) Effects of various inhalation modes on the deposition of radioactive pressurised aerosols. Eur JRespir Dżs 63 (Suppl 119): 57–65.

    Google Scholar 

  49. Tal A, Golan H, Grauer N, Aviram M, Albin D, Quastel MR (1996) Deposition pattern of radiolabeled salbutamol inhaled from a metered-dose inhaler by means of a spacer with mask in young children with airway obstruction. J Pediatr 128: 479–484.

    Article  CAS  Google Scholar 

  50. Kleerup EC, Tashkin DP, Cline AC, Ekholm BP (1996) Cumulative dose-response study of non-CFC propellant HFA 134a salbutamol sulfate metered dose inhaler in patients with asthma. Chest 109: 702–707.

    Article  PubMed  CAS  Google Scholar 

  51. Leach CL, Davidson P, Heilman J, Boudreau R (1977) Improved lung deposition and decreased oro-pharyngeal deposition with a new CFC-free beclamethasone metered dose inhaler. Am J Respir Crit Care Med 155: A667.

    Google Scholar 

  52. Everard ML, Devadason SG, Summers QA, Le Souëf PN (1995) Factors affecting total and “respirable” dose delivered by a salbutamol metered dose inhaler. Thorax 50: 746–749.

    Article  PubMed  CAS  Google Scholar 

  53. Cyr TD, Graham SJ, Li KYR, Lovering EG (1991) Low first spray drug content in salbuterol metered-dose inhalers. Pharmaceut Res 8: 658–660.

    Article  CAS  Google Scholar 

  54. Wilson AF, Mukai DS, Ahbout JJ (1991) Effect of canister temperature on performance of metered-dose inhalers. Am Rev Respir Dis 143: 1034–1037.

    PubMed  CAS  Google Scholar 

  55. Hampson NB, Mueller MP (1989) Cooling of metered-dose inhalers decreases pressure output from canisters. N Engl JMed 320: 321.

    CAS  Google Scholar 

  56. Devadason SG, Wildhaber JH, Linto JM, Summers QA, Le Souëf PN (1996) Factors affecting in vitro delivery from plastic spacers. Am J Respir Crit Care Med 153: A60.

    Google Scholar 

  57. Wildhaber JH, Devadason SG, Hayden MJ, James R, Dufty AP, Fox RA, Summers QA, Le Souëf PN (1996) Electrostatic charge on a plastic spacer device influences the delivery of salbutamol. Eur Respir J 9: 1943–1946.

    Article  PubMed  CAS  Google Scholar 

  58. Wildhaber JH, Devadason SG, Hayden MJ, Eber E, Summers QA, Le Souëf PN (1996) Effect of electrostatic charge, flow, delay and multiple actuations on the in vitro delivery of salbutamol from different small volume spacers for infants. Thorax 51: 985–988.

    Article  PubMed  CAS  Google Scholar 

  59. Barry PW, O’Callaghan C (1994) Multiple actuations of salbutamol MDI into a spacer device reduce the amount of drug recovered in the respirable range. Eur Respir J 7: 1707–1709.

    Article  PubMed  CAS  Google Scholar 

  60. Clark AR (1992) In-vitro assessment of spacer and reservoir devices. In: Dalby RN, Evans RM (ed.) Respiratory drug delivery П Lexington Kentucky: University of Kentucky, 407–482.

    Google Scholar 

  61. Barry PW, O’Callaghan C (1995) The use of the chlorofluorocarbon-free salbutamol preparation, Airomir, with different spacer devices. Thorax 50 (Suppl 2): A78.

    Google Scholar 

  62. Barry PW, Robertson CF, O’Callaghan C (1993) Optimum use of a spacer device. Arch Dis Child 69: 693–694.

    Article  PubMed  CAS  Google Scholar 

  63. Ross D, Carlson S, June D (1996) Comparison of a new HFA albuterol metered dose inhaler (MDI) to a marketed CFC albuterol MDI: Effect of storage orientation, end of vial life and temperature on dosing consistency. Am J Respir Crit Care Med 153: A62.

    Google Scholar 

  64. Hansen O, Pedersen S (1989) Optimal inhalation technique with terbutaline Turbuhaler. Eur J Respir Med 2: 637–639.

    CAS  Google Scholar 

  65. Pedersen S, Hansen OR, Fuglsang G (1990) Influence of inspiratory flow rate upon the effect of a Turbuhaler. Arch Dis Child 65: 308–319.

    Article  PubMed  CAS  Google Scholar 

  66. Engel T, Scharling B, Skovsted B, Heinig JH (1992) Effects, side effects and plasma concentrations of terbutaline in adult asthmatics after inhaling from a dry powder inhaler device at different inhalation flows and volumes. Br J Clin Pharmacol 33: 439–444.

    Article  PubMed  CAS  Google Scholar 

  67. Jaegfeldt H, Andersoon JAR, Trofast E, Wetterlin KIL (1987) Particle size distribution from different modifications of Turbuhaler. In: Newman SP, Moren F, Crompton GK (eds). A new concept in inhalation therapy The Netherlands: Medicom, 90–99.

    Google Scholar 

  68. de Boer AH, Hagedoom P (1996) Necessary flow rates for maximum fine particle output from commercial dry powder inhalers (DPIs). Eur Respir J 9: 2065.

    Google Scholar 

  69. Everard ML, Devadason SG, Le Souëf PN (1996) In vitro assessment of drug delivery through an endotracheal tube using a dry powder inhaler delivery system. Thorax 51: 75–77.

    Article  PubMed  CAS  Google Scholar 

  70. Meakin BJ, Cainey JM, Woodcock PM (1995) Simulated “in-use” and “mis-use” aspects of the delivery of terbutaline sulphate from Bricanyl TurbohalerTMdry powder inhalers. Int J Pharm 119: 103–108.

    Article  CAS  Google Scholar 

  71. Meakin BJ, Cainey JM, Woodcock PM (1995) Drug delivery characteristics of Bricanyl TurbohalerTM dry powder inhalers. Int J Pharm 119: 91–102.

    Article  CAS  Google Scholar 

  72. Pedersen S (1994) Inspiratory capacity through the Turbuhaler in various patient groups. J Aerosol Med 7: S55–S58.

    CAS  Google Scholar 

  73. Melchor R, Biddiscombe MF, Mak VHF, Short MD, Spiro SG (1993) Lung deposition patterns of directly labelled salbutamol in normal subjects and in patients with reversible airflow obstruction. Thorax 48: 506–511.

    Article  PubMed  CAS  Google Scholar 

  74. Newman SP, Hollingworth A, Clark AR (1994) Effect of different modes of inhalation on drug delivery from a dry powder inhaler. Int J Pharm 102: 127–132.

    Article  CAS  Google Scholar 

  75. Hardy JG, Everard ML, Coffiner M, Fossion J (1993) Lung deposition of a Nacystelyn metered dose inhaler formulation. J Aerosol Med 6: 37–44.

    Article  Google Scholar 

  76. Johnson MA, Newman SP, Bloom R, Talaee N, Clarke SW (1991) Delivery of albuterol and ipratropum bromide from two nebuliser systems in chronic stable asthma: efficacy and pulmonary deposition. Chest 99: 1139–1144.

    Article  Google Scholar 

  77. Thomas SHL, O’Doherty MJ, Page CJ, Nunan TO, Bateman NT (1991) Which apparatus for inhaled pentamidine? A comparison of pulmonary deposition via eight nebulisers. Eur Respir J 4: 616–622.

    PubMed  CAS  Google Scholar 

  78. Everard ML, Evans M, Milner AD (1994) Is tapping jet nebulisers worthwhile? Arch Dis Child 70: 538–539.

    Article  PubMed  CAS  Google Scholar 

  79. Zainudin BM, Tolfree SEJ, Short M, Spiro SG (1988) Influence of breathing pattern on lung deposition and bronchodilator response to nebulised salbutamol in patients with stable asthma. Thorax 43: 987–991.

    Article  PubMed  CAS  Google Scholar 

  80. Newhouse MT, Ruffin RE (1978) Deposition and fate of aerosolised drugs. Chest 73: 936–942.

    PubMed  CAS  Google Scholar 

  81. Dolovich M, Ryan G, Newhouse MT (1981) Aerosol penetration into the lung; influence on airway responses. Chest 80(Suppl): 834–836.

    PubMed  CAS  Google Scholar 

  82. Kohler D, Fleischer W. Established facts in inhalation therapy: A review of aerosol therapy and commonly used drugs. In: Hoffman P (ed.) Lung and Respiration: Diseases of lung and respiratory tract, volume VI, no. 1. Frankfurt: pmi Verlag GmbH, 1–16.

    Google Scholar 

  83. Mukhopadyay S, Staddon GE, Eastman C, Palmer M, Rhys Davies E, Carswell F (1994) The quantitative distribution of nebulised antibiotic in the lungs in cystic fibrosis. Respir Med 88: 203–211.

    Article  Google Scholar 

  84. Nikander K (1994) Drug delivery systems. J Aerosol Med 7(suppl 1): S19–S24.

    CAS  Google Scholar 

  85. Marshall LM, Francis PW, Khafagi FA (1994) Aerosol deposition in cystic fibrosis using an aerosol conservation device and a conventional jet nebuliser. J Pediatr Child Health 30: 65–67.

    Article  CAS  Google Scholar 

  86. Thomas SHL, Langford JA, George RDG, Geddes DM (1988) Improving the efficiency of drug administration with jet nebulisers. Lancet 1: 126.

    Article  PubMed  CAS  Google Scholar 

  87. Devadason SG, Everard ML, Linto JM, Le Souëf PN (1995) Drug delivery from three types of jet nebuliser delivery systems in childhood. Am J Respir Crit Care Med 151: A55.

    Google Scholar 

  88. Le Souëf PN, Devadason SG, Linto JM, Everard ML (1995) Comparison of delivery from “Venturi” and conventional nebulisers in children. Eur Respir J 8: 2005.

    Google Scholar 

  89. Knoch M, Wunderlich E, Geldner S (1994) A nebulizer system for highly reproducible aerosol delivery. J Aerosol Med 7: 229–237.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Basel AG

About this chapter

Cite this chapter

Devadason, S.G., Le Souëf, P.N. (1997). Aerosol Delivery Systems in Children. In: Wilmott, R.W. (eds) The Pediatric Lung. Respiratory Pharmacology and Pharmacotherapy. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8960-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8960-5_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9845-4

  • Online ISBN: 978-3-0348-8960-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics