Advertisement

Artin L-Functions

Chapter
  • 322 Downloads
Part of the Progress in Mathematics book series (PM, volume 157)

Abstract

In this section, we shall collect together a few group theoretic preliminaries. We begin by reviewing the basic aspects of characters and class functions.

Keywords

Normal Subgroup Conjugacy Class Prime Ideal Maximal Subgroup Irreducible Character 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [CF]
    J. Cassels and A. Fröhlich,Algebraic Number Theory, Academic Press, 1967.Google Scholar
  2. [D]
    H. Davenport, Multiplicative Number Theory, Springer-Verlag, 1980.Google Scholar
  3. [Fo]
    R. Foote, Non-monomial characters and Artin’s conjecture, Trans. Amer. Math. Soc., 321 (1990), 261–272.MathSciNetzbMATHGoogle Scholar
  4. [FM]
    R. Foote and V. Kumar Murty, Zeros and poles of Artin L-series, Math. Proc. Camb. Phil. Soc., 105 (1989), 5–11.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [FW]
    R. Foote and D. Wales, Zeros of order 2 of Dedekind zeta functions and Artin’s conjecture, J. Algebra, 131 (1990), 226–257.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [Fr]
    A. Fröhlich, Galois Module Structure of algebraic integers, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, 1983.Google Scholar
  7. [K]
    N. Katz, Galois properties of torsion points of abelian varieties, Invent. Math., 62 (1981), 481–502.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [La]
    S. Lang, Algebraic Number Theory, Springer-Verlag, 1986.Google Scholar
  9. [LO]
    J. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev Density Theorem, Algebraic Number Fields,. A. Fröhlich, 409–464, Academic Press, New York, 19Google Scholar
  10. [LMO]
    J. Lagarias, H. Montgomery and A. M. Odlyzko, A bound for the least prime ideal in the Chebotarev Density Theorem, Invent. Math., 54 (1979), 271–296.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [Mu1]
    V. Kumar Murty, Holomorphy of Artin L-functions, in: Proc. Ramanujan Centennial Conference, 55–66, Ramanujan Mathematical Society, Chidambaram, 1987.Google Scholar
  12. [Mu2]
    V. Kumar Murty, Explicit formulae and the Lang-Trotter conjecture, Rocky Mountain J. Math., 15 (1985), 535-551.Google Scholar
  13. [Mu3]
    V. Kumar Murty, The least prime which does not split completely, Forum Math., 6 (1994), 555–565.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [MM]
    M. Ram Murty and V. Kumar Murty, Base change and the Birch and Swinnerton-Dyer conjecture, in: A tribute to Emil Grosswald: number theory and analysis, Contemp. Math., 143 (1993), 481–494.CrossRefGoogle Scholar
  15. [MMS]
    M. Ram Murty V. Kumar Murty and N. Saradha, Modular forms and the Chebotarev Density Theorem, Amer. J. Math., 110 (1988), 253–281.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [MS]
    V. Kumar Murty and J. Scherk, Effective versions of the Chebotarev Density Theorem in the function field case, C.R. Acad. Sci. Paris, 319 (1994), 523–528.MathSciNetzbMATHGoogle Scholar
  17. [R]
    S. Rhoades, A generalization of the Aramata-Brauer theorem, Proc. Amer. Math. Soc., 119 (1993), 357–364.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [Se1]
    J.-P. Serre, Linear representations of finite groups, Springer-Verlag, New York, 1977.CrossRefzbMATHGoogle Scholar
  19. [Se2]
    J.-P. Serre, Quelques applications du Théorème de Densité de Chebotarev, Publ. Math. IHES, 54 (1981), 123–CrossRefzbMATHGoogle Scholar
  20. [St]
    H. M. Stark, Some effective cases of the Brauer-Siegel theorem, Invent. Math., 23 (1974), 135–152.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [Uc]
    K. Uchida, On Artin L-functions, Tohoku Math. J., 27 (1975), 75–81.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [vdW]
    R. W. van der Waall, On a conjecture of Dedekind on zeta functions, Indag. Math., 37 (1975), 83–86.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1997

Authors and Affiliations

  1. 1.Department of MathematicsQueen’s UniversityKingstonCanada
  2. 2.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations