Advertisement

Introduction

Chapter
  • 315 Downloads
Part of the Progress in Mathematics book series (PM, volume 157)

Abstract

Since the time of Dirichlet and Riemann, the analytic properties of L-functions have been used to establish theorems of a purely arithmetic nature. The distribution of prime numbers in arithmetic progressions is intimately connected with non-vanishing properties of various L-functions. With the subsequent advent of the Tauberian theory as developed by Wiener and Ikehara, these arithmetical theorems have been shown to be equivalent to the non-vanishing of these L-functions on the line Re(s) = 1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Basel AG 1997

Authors and Affiliations

  1. 1.Department of MathematicsQueen’s UniversityKingstonCanada
  2. 2.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations