Skip to main content

The arithmetic mean — the geometric mean and related matrix inequalities

  • Conference paper
Book cover General Inequalities 7

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 123))

  • 660 Accesses

Abstract

The difficulty of establishing a (noncommutative) matrix inequality involving the geometric mean was discussed in 1978 by K.V. Bhagwat and R. Subramanian [9] who pointed out that the problem of defining a geometric mean for non-commutative operators “makes it difficult to establish the validity or otherwise of the classical inequalities involving the geometric mean”. However, in a recent paper, Sagae and Tanabe [32] define a geometric mean and establish an AG-GM inequality for a finite number of positive definite matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Alić, P.S. Bullen, J. Pečarić and V. Volenec, Gerber’s and related inequalities. Submitted for publication.

    Google Scholar 

  2. M. Alić, B. Mond, J. Pečarić and V. Volenec, The arithmetic-geometric-harmonic means and related matrix inequalities. Submitted for publication.

    Google Scholar 

  3. M. Alić, B. Mond, J. Pečarić and V. Volenec, Bounds for the differences of matrix means. To appear in SIAM J. on Matrix Analysis.

    Google Scholar 

  4. M. Alić, J. Pečarić and V. Volenec, On the arithmetic mean-the geometric mean matrix inequality. Submitted for publication.

    Google Scholar 

  5. H. Alzer, A lower bound for the difference between the arithmetic and geometric means. Nieuw Archief voor Wiskunde, 8 (1990), 195–197.

    MathSciNet  MATH  Google Scholar 

  6. W.N. Amderspm, Jr. and R.J. Duffin, Series and parallel addition of matrices. J. Math. Anal. Appl. 26 (1969), 576–594.

    Article  MathSciNet  Google Scholar 

  7. J.K. Baksalary and S. Puntanen, Generalized matrix versions of the Cauchy-Schwarz and Kantorovich inequalities. Aequationes Math. 41 (1991), 103–110.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Bendat and S. Sherman, Monotone and convex operator functions. Trans. Amer. Math. Soc. 79 (1955), 58–71.

    Article  MathSciNet  MATH  Google Scholar 

  9. K.V. Bjagwat and R. Subramanian, Inequalities between means of positive operators. Math. Proc. Camb. Phil. Soc. 83 (1978), 393–401.

    Article  Google Scholar 

  10. C. Davis, Notions generalizing convexity for functions defined on spaces of matrices. Proc. Symp. Pure Math., Vol. 7: Convexity, Amer. Math. Soc. (1963), 187–201.

    Google Scholar 

  11. A. Gopvagnoli and H.P. Wynn, G-majorization with application to matrix orderings. Lin. Alg. Appl. 67 (1985), 111–135.

    Article  Google Scholar 

  12. F. Holland, On a mixed arithmetic-mean, geometric-mean inequality. Mathematics Competitions 5 (1992), 60–64.

    Google Scholar 

  13. R.A. Horn and C.R. Johnson, Matrix Analysis. Cambridge University Press, New York, 1985.

    Book  MATH  Google Scholar 

  14. D.G. Kaffes, An inequality for matrices. Bull. Greek Math. Soc. 22 (1981), 143–159.

    MathSciNet  MATH  Google Scholar 

  15. D.G. Kaffes, T. Mathew, M.B. Rao and K. Subramanyam, On the matrix convexity of the Moore-Penrose inverse and some applications. Lin. Multilin. Alg. 24 (1989), 265–271.

    Article  MathSciNet  MATH  Google Scholar 

  16. K. Kedlaya, Proof of a mixed arithmetic-mean, geometric-mean inequality. Amer. Math. Monthly 101 (1994), 355–357.

    Article  MathSciNet  MATH  Google Scholar 

  17. A.W. Marshall and I. Olkin, Matrix versions of the Cauchy and Kantorovich inequalities. Aequationes Math. 40 (1990), 89–93.

    Article  MathSciNet  MATH  Google Scholar 

  18. D.S. Mitrinović, Analytic Inequalities. Springer Verlag, Berlin-Heidelberg-New York, 1970.

    Google Scholar 

  19. D.S. Mitrinović, J.E. Pečarić and A.M. Fink, Classical and new inequalities in analysis. Kluwer Acad. Pub., Dordrecht-Boston-London, 1993.

    Book  MATH  Google Scholar 

  20. B. Mond and J.E. Pečarić, A simple proof of generalized inequalities of Bhag-wat and Subramanian and some converse results. Indian Journal of Mathematics 37 (1995).

    Google Scholar 

  21. B. Mond and J.E. Pečarić, Remarks on Jensen’s inequality for operator convex functions. Ann. Univ. Mariae Curie-Sklodowska, Sec. A, 47 (1993), 96–103.

    MATH  Google Scholar 

  22. B. Mond and J.E. Pečarić, Mixed means inequalities for positive linear operators. Submitted for publication.

    Google Scholar 

  23. B. Mond and J.E. Pečarić, Reverse forms of a convex matrix inequality Lin. Alg. Appl. 220 (1995), 359–364.

    Article  MATH  Google Scholar 

  24. B. Mond and J.E. Pečarić, On matrix convexity of the Moore-Penrose inverse. International Journal of Mathematics and Mathematical Sciences. To appear.

    Google Scholar 

  25. B. Mond and J.E. Pečarić, A matrix version of the Ky Fan generalization of the Kantorovich inequality. Linear and Multilinear Algebra 36 (1994), 217–221.

    Article  MathSciNet  MATH  Google Scholar 

  26. B. Mond and J.E. Pečarić, Matrix versions of some means inequalities. Australian Mathematical Society Gazette 20 (1993), 117–120.

    MathSciNet  MATH  Google Scholar 

  27. B. Mond and J.E. Pečarić, A matrix version of the Ky Fan generalization of the Kantorovich inequality II. Linear and Multilinear Algebra 38 (1995), 309–313.

    Article  MathSciNet  MATH  Google Scholar 

  28. B. Mond and J.E. Pečarić, A mixed arithmetic-mean harmonic-mean matrix inequality. Lin. Alg. Appl. To appear.

    Google Scholar 

  29. M.H. Moore, A convex matrix function. Amer. Math. Monthly 80 (1973), 408–409.

    Article  MathSciNet  MATH  Google Scholar 

  30. I. Olkin and J. Pratt, A multivariate Tchebycheff inequality. Ann. Math. Statist. 29 (1958), 226–234.

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Pečarić, S. Puntanen and G.P.M. Styan, Some further matrix extensions of the Cauchy-Schwarz and Kantorovich inequalities with some statistical applications. Lin. Alg. Appl. To appear.

    Google Scholar 

  32. M. Sagae and K. Tanabe, Upper and lower bounds for the arithmetic-geometric-harmonic means of positive definite matrices. Linear and Multilinear Algebra 37 (1994), 279–282.

    Article  MathSciNet  MATH  Google Scholar 

  33. P. Whittle, A multivariate generalization of Tchebychev’s inequality. Quart. J. Math. Oxford, Ser [2] 9 (1958), 232–240.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Basel AG

About this paper

Cite this paper

Pečarić, J., Mond, B. (1997). The arithmetic mean — the geometric mean and related matrix inequalities. In: Bandle, C., Everitt, W.N., Losonczi, L., Walter, W. (eds) General Inequalities 7. ISNM International Series of Numerical Mathematics, vol 123. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8942-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8942-1_8

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9837-9

  • Online ISBN: 978-3-0348-8942-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics