Skip to main content

Norm Eigenvalue bounds for some weighted Sturm-Liouville problems

  • Conference paper
General Inequalities 7

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 123))

  • 618 Accesses

Abstract

The problem of obtaining upper and lower bounds for eigenvalues for regular Sturm-Liouville problems is considered in this paper. The goal is to find bounds in terms of integrals of the coefficients and avoid the use of pointwise bounds. The general weighted problem is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.S. Ashbaugh and R.D. Benguria, Eigenvalue ratios for Sturm-Liouville operators. J. Diff. Equations 103 (1993), 205–219.

    Article  MathSciNet  MATH  Google Scholar 

  2. F.V. Atkinson and A.B. Mingarelli, Asymptotics of zeros and of the eigenvalues of general weighted Sturm-Liouville problems. J. Reine Angew. Math. 375/376 (1987), 380–393.

    MathSciNet  Google Scholar 

  3. C. Bandle, Extremal problems for eigenvalues of the Sturm-Liouville type. In “General Inequalities 5”, Birkhäuser Verlag, Basel, 1987, pp. 319–339.

    Chapter  Google Scholar 

  4. R.C. Brown and D.B. Hinton, Applications of a one-dimensional Sobolev inequality to eigenvalue problems. J. Diff. and Int. Eqs. To appear.

    Google Scholar 

  5. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. I. Inter-science, New York, 1953.

    Google Scholar 

  6. H. Egnell, Extremal properties of the first eigenvalue of a class of elliptic eigenvalue problems. Ann. Scuola Norm. Sup. Pisa, ser. 4 14 (1987), 1–48.

    MathSciNet  MATH  Google Scholar 

  7. M. Essén, On estimating eigenvalues of a second order linear differential operator. In “General Inequalities 5”, Birkhäuser Verlag, Basel, 1987, pp. 347–366.

    Chapter  Google Scholar 

  8. A.M. Fink, Conjugate inequalities for functions and their derivatives. Siam J. Math. Anal. 5 (1974), 399–411.

    Article  MathSciNet  MATH  Google Scholar 

  9. A.M. Fink, Differential inequalites and disconjugacy. J. Math. Anal. Appl. 49, 758–772.

    Google Scholar 

  10. E.M. Harrell, III, Hamiltonian operators with maximal eigenvalues. J. Math. Physics 25 (1984), 48–51.

    Article  MathSciNet  MATH  Google Scholar 

  11. J.B. Keller, The mimimum ratio of two eigenvalues. SIAM J. Appl. Math 31 (1976), 485–491.

    Article  MathSciNet  MATH  Google Scholar 

  12. M.G. Krein, On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability. AMS translations, ser. 2 1 (1955), 164–187.

    Google Scholar 

  13. T.J. Mahar and B.E. Willner, An extremal eigenvalue problem. Comm. Pure Appl. Math. 29 (1976), 517–529.

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Makai, Über die Nullstellen von Funktionen, die Lösungen Sturm-Liouville’scher Differentialgleichungen sind. Commentarii Mathematici Helvetia 16 (1943–4), 153–199.

    Article  MathSciNet  Google Scholar 

  15. J.R. McLaughlin, Upper and lower bounds on eigenvalues of second-order Sturm-Liouville systems. J. Diff. Eqs. 19 (1975), 201–213.

    Article  MathSciNet  MATH  Google Scholar 

  16. D.S. Mitrinović, J.E. Pecarić, and A. M. Fink, Inequalities involving functions and their derivatives. Mathematics and its applications, Kluwer Academic Publishers, Dordrecht-Boston-London, 1991.

    Google Scholar 

  17. M.A. Naimark, Linear differential operators, Part I. Unger, London, 1968.

    MATH  Google Scholar 

  18. B.A. Troesch, An isoperimetric sloshing problem. Comm. Pure Appl. Math. 18 (1965), 319–338.

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Talenti, Best constant in Sobolev’s inequality. Annali di Mat. Pura ed appl. 110 (1976), 353–372.

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Talenti, Estimates for eigenvalues of Sturm-Liouville problems. In “General Inequalities 4”, Birkhäuser Verlag, Basel, 1984, pp. 341–350.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Basel AG

About this paper

Cite this paper

Brown, R.C., Hinton, D.B. (1997). Norm Eigenvalue bounds for some weighted Sturm-Liouville problems. In: Bandle, C., Everitt, W.N., Losonczi, L., Walter, W. (eds) General Inequalities 7. ISNM International Series of Numerical Mathematics, vol 123. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8942-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8942-1_11

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9837-9

  • Online ISBN: 978-3-0348-8942-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics