Skip to main content

Fractal Regional Myocardial Blood Flows: The Anatomical Basis

  • Chapter

Part of the book series: Mathematics and Biosciences in Interaction ((MBI))

Abstract

Fractals provide a basis for analyzing recursive processes in biology, such as the growth of arborizing networks in the circulatory system, airways or glandular ducts. Coronary branching patterns appear fractal; constructing artificial vascular networks from the anatomical statistics can be done in various ways. Using a simple avoidance algorithm to position successive segments of an adult coronary arterial system correctly provides a priori prediction of five physiological features: (1) pressure profiles, (2) spatial heterogeneity in regional flows, (3) fractal dimension for the self-similarity, (4) spatial self-similar autocorrelation in flows, (5) fractal temporal washout from vascular indicators with power law exponent of —3. The success in explaining the physiology from the anatomy does not explain why the anatomy itself explains so much: growth processes of a variety of sorts may lead to similar results through a combination of growth followed by remodeling to fine-tune the relationship between tissue demands and vascular supply of oxygen and nutrients. The remodeling may be even more important than the original growth processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. King, R.B., J.B. Bassingthwaighte, J.R.S. Hales, and L.B. Rowell. Stability of heterogeneity of myocardial blood flow in normal awake baboons. Circ. Res. 57:285–295, 1985.

    Article  PubMed  CAS  Google Scholar 

  2. King, R.B., and J.B. Bassingthwaighte. Temporal fluctuations in regional myocardial flows. Pflugers Arch. (Eur. J. Physiol.) 413/4:336–342, 1989.

    Article  CAS  Google Scholar 

  3. Bassingthwaighte, J.B. Physiological heterogeneity: Fractals link determinism and randomness in structures and functions. News Physiol. Sci. 3:5–10, 1988.

    PubMed  Google Scholar 

  4. Bassingthwaighte, J.B., C.Y. Wang, and I.S. Chan. Blood- tissue exchange via transport and transformation by endothelial cells. Circ. Res. 65:997–1020, 1989.

    Article  PubMed  CAS  Google Scholar 

  5. Bassingthwaighte, J.B., and R.P. Beyer. Fractal correlation in heterogeneous systems. Physica D 53:71–84, 1991.

    Article  Google Scholar 

  6. Glenny, R., H.T. Robertson, S. Yamashiro, and J.B. Bassingthwaighte. Applications of fractal analysis to physiology. J. Appl. Physiol. 70:2351–2367, 1991.

    PubMed  CAS  Google Scholar 

  7. Grant, P.E., and C.J. Lumsden. Fractal analysis of renal cortical perfusion. Invest. Radiol. 29:16–23, 1994.

    Article  PubMed  CAS  Google Scholar 

  8. Sernetz, M., J. Wubbeke, and P. Wlczek. Three-dimensional image analysis and fractal characterization of kidney arterial vessels. Physica A 191:13–16, 1992.

    Article  Google Scholar 

  9. Eke, A., P. Herman, J.B. Bassingthwaighte, G.M. Raymond, I. Balla, and C. Ikrenyi. Fractal analysis of temporal changes in red blood cell flux measured by laser doppler flowmetry in the rat brain cortex. Microcirculation 3:85, 1996.

    Google Scholar 

  10. Bassingthwaighte, J.B., and D.A. Beard. Fractal 15O-water washout from the heart. Circ. Res. 77:1212–1221, 1995.

    Article  PubMed  CAS  Google Scholar 

  11. Williams, T.F., J.H. Exton, C.R. Park, and D.M. Regen. Stereospecific transport of glucose in the perfused rat liver. Am. J. Physiol. 215:1200–1209, 1968.

    PubMed  CAS  Google Scholar 

  12. Deussen, A., and J.B. Bassingthwaighte. Modeling [15O]oxygen tracer data for estimating oxygen consumption. Am. J. Physiol. 270 (Heart Circ. Physiol. 39):H1115-H1130, 1996.

    PubMed  CAS  Google Scholar 

  13. Bassingthwaighte, J.B., and F.H. Ackerman. Mathematical linearity of circulatory transport. J. Appl. Physiol. 22:879–888, 1967.

    PubMed  CAS  Google Scholar 

  14. Prusinkiewicz, P., and J. Hanan. Lecture Notes in Biomathematics: Lindenmayer Systems, Fractals, and Plants. New York: Springer-Verlag, 120, (1989).

    Google Scholar 

  15. Prusinkiewicz, P., A. Lindenmayer, J.S. Hanan, F.D. Fracchia, D.R. Fowler, M.J.M. de Boer, and L. Mercer. The Algorithmic Beauty of Plants. New York: Springer-Verlag, 1990.

    Book  Google Scholar 

  16. Kaandorp, J.A. Fractal Modelling: Growth and Form in Biology. Berlin: Springer-Verlag, 1994, 208 pp.

    Book  Google Scholar 

  17. Lindenmayer, A. Mathematical models for cellular interactions in development. I. Filaments with one-sided inputs. J. Theoret. Biol. 18:280–299, 1968.

    Article  CAS  Google Scholar 

  18. Lindenmayer, A. Mathematical models for cellular interactions in development. II. Simple and branching filaments with two-sided inputs. J. Theoret. Biol. 18:300–315, 1968.

    Article  CAS  Google Scholar 

  19. Barnsley, M.F. Fractals Everywhere. Boston: Academic Press, Inc., 394, (1988).

    Google Scholar 

  20. Bassingthwaighte, J.B., L.S. Liebovitch, and B.J. West. Fractal Physiology. New York, London: Oxford University Press, 364, (1994).

    Google Scholar 

  21. Lauwerier, H. Fractals. Meetjundige figuren in eindeloze herhaling. Amsterdam: Aramith Uitgevers, 1987.

    Google Scholar 

  22. Vicsek, T. Fractal Growth Phenomena, Second Edition. Singapore: World Scientific, 1992, 355 pp.

    Book  Google Scholar 

  23. Avnir, D. The Fractal Approach to Heterogeneous Chemistry. In: The Fractal Approach to Heterogeneous Chemistry: Surfaces, Colloids, Polymers, edited by D. Avnir. New York: Wiley, 199–225, (1989).

    Google Scholar 

  24. Meinhardt, H. Models of Biological Pattern Formation. New York: Academic Press, 1982.

    Google Scholar 

  25. Thompson, D.A.W. On Growth and Form. Cambridge: Cambridge University Press, 346, (1961).

    Google Scholar 

  26. Suwa, N., T. Niwa, H. Fukasawa, and Y. Sasaki. Estimation of intravascular blood pressure gradient by mathematical analysis of arterial casts. Tohoku J. Exp. Med. 79:168–198, 1963.

    Article  PubMed  CAS  Google Scholar 

  27. Suwa, N., and T. Takahashi. Morphological and Morphometrical Analysis of Circulation in Hypertension and Ischemic Kidney. Munich: Urban & Schwarzenberg, 1971.

    Google Scholar 

  28. Kassab, G.S., C.A. Rider, N.J. Tang, and Y.B. Fung. Morphometry of pig coronary arterial trees. Am. J. Physiol. 265 (Heart Circ. Physiol. 34):H350–H365, 1993.

    PubMed  CAS  Google Scholar 

  29. van Beek, J.H.G.M., S.A. Roger, and J.B. Bassingthwaighte. Regional myocardial flow heterogeneity explained with fractal networks. Am. J. Physiol. 257 (Heart Circ. Physiol. 26):H1670–H1680, 1989.

    PubMed  Google Scholar 

  30. Murray, C.D. The physiological principle of minimum work applied to the angle of branching of arteries. J. Gen. Physiol. 9:835–841, 1926.

    Article  PubMed  CAS  Google Scholar 

  31. Zamir, M. The branching structure of arterial trees. Comments Theoret. Biol. 1:15–37, 1988.

    Google Scholar 

  32. Zamir, M., and P. Sinclair. Roots and calibers of the human coronary arteries. Am. J. Anat. 183:226–234, 1988.

    Article  PubMed  CAS  Google Scholar 

  33. Caldwell, J.H., G.V. Martin, G.M. Raymond, and J.B. Bassingthwaighte. Regional myocardial flow and capillary permeability-surface area products are nearly proportional. Am. J. Physiol. 267 (Heart Circ. Physiol. 36):H654–H666, 1994.

    PubMed  CAS  Google Scholar 

  34. Bassingthwaighte, J.B., T. Yipintsoi, and R.B. Harvey. Microvasculature of the dog left ventricular myocardium. Microvase. Res. 7:229–249, 1974.

    Article  CAS  Google Scholar 

  35. Arts, T., R.T. Kruger, W. van Gerven, J.A. Labregts, and R.S. Reneman. Propagation velocity and reflection of pressure waves in the canine coronary artery. Am. J. Physiol. 237:H469–H474, 1979.

    PubMed  CAS  Google Scholar 

  36. van Bavel, E., and J.A. Spaan. Branching patterns in the porcine coronary arterial tree. Estimation of flow heterogeneity. Circ. Res. 71:1200–1212, 1992.

    Article  Google Scholar 

  37. Kassab, G.S., K. Imoto, F.C White, C.A. Rider, Y.C.B. Fung, and CM. Bloor. Coronary arterial tree remodeling in right ventricular hypertrophy. Am. J. Physiol. 265 (Heart Circ. Physiol. 34):H366–H375, 1993.

    PubMed  CAS  Google Scholar 

  38. Bassingthwaighte, J.B., M.A. Malone, T.C Moffett, R.B. King, I.S. Chan, J.M. Link, and K. A. Krohn. Molecular and particulate depositions for regional myocardial flows in sheep. Circ. Res. 66:1328–1344, 1990.

    Article  PubMed  CAS  Google Scholar 

  39. Gonzalez, F., and J.B. Bassingthwaighte. Heterogeneities in regional volumes of distribution and flows in the rabbit heart. Am. J. Physiol. 258 (Heart Circ. Physiol. 27):H1012–H1024, 1990.

    PubMed  CAS  Google Scholar 

  40. Zamir, M., and H. Chee. Branching characteristics of human coronary arteries. Can. J. Physiol. Pharmacol. 64:661–668, 1986.

    Article  PubMed  CAS  Google Scholar 

  41. Zamir, M., and H. Chee. Segment analysis of human coronary arteries. Blood Vessels 24:76–84, 1987.

    PubMed  CAS  Google Scholar 

  42. Yipintsoi, T., and J.B. Bassingthwaighte. Circulatory transport of iodoantipyrine and water in the isolated dog heart. Circ. Res. 27:461–477, 1970.

    CAS  Google Scholar 

  43. Hamilton, W.F., J.W. Moore, J.M. Kinsman, and R.G. Spurling. Studies on the circulation. IV. Further analysis of the injection method, and of changes in hemodynamics under physiological and pathological conditions. Am. J. Physiol. 99:534–551, 1932.

    CAS  Google Scholar 

  44. Bassingthwaighte, J.B., F.H. Ackerman, and E.H. Wood. Applications of the lagged normal density curve as a model for arterial dilution curves. Circ. Res. 18:398–415, 1966.

    Article  PubMed  CAS  Google Scholar 

  45. Thompson, H.K., C.F. Starmer, R.E. Whalen, and H.D. McIntosh. Indicator transit time considered as a gamma variate. Circ. Res. 14:502–515, 1964.

    Article  PubMed  Google Scholar 

  46. Sheppard, C.W. Mathematical consideration of indicator-dilution techniques. Minn. Med. 37:93–104, 1954.

    PubMed  CAS  Google Scholar 

  47. Icardo, J.M. Heart anatomy and developmental biology. Experientia 44:910–919, 1988.

    Article  PubMed  CAS  Google Scholar 

  48. Turing, A.M. The chemical basis of morphogenesis. Philos. Trans. R. Soc. London B237:37–72, 1952.

    CAS  Google Scholar 

  49. Ingber, D.E., and J. Folkman. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J. Cell Biol. 109:317–330, 1989.

    Article  PubMed  CAS  Google Scholar 

  50. Murray, J.D., P.K. Maini, and R.T. Tranquillo. Mechanochemical models for generating biological pattern and form in development. Physics Reports 171:59–84, 1988.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Basel AG

About this chapter

Cite this chapter

Bassingthwaighte, J.B., Beard, D.A., King, R.B. (1998). Fractal Regional Myocardial Blood Flows: The Anatomical Basis. In: Losa, G.A., Merlini, D., Nonnenmacher, T.F., Weibel, E.R. (eds) Fractals in Biology and Medicine. Mathematics and Biosciences in Interaction. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8936-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8936-0_8

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9834-8

  • Online ISBN: 978-3-0348-8936-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics