Skip to main content

Dynamical Analysis of Heartbeat Interval Time Series After Cardiac Transplantation

  • Chapter
Fractals in Biology and Medicine

Abstract

Functional re-innervation of the transplanted human heart by the autonomic nervous system has not yet been demonstrated and lack of autonomic control of the transplanted allograft is reflected by an increased resting heart rate, a sluggish heart rate response to dynamical exercise and a reduced heart rate variability. Recent evidence suggests that a measure of deterministic chaos in the heartbeat interval time series, the point correlation dimension (PD2), is superior to the conventional power spectrum analysis which is based on the assumption of stochastic dynamics and limited by the requirements of stationarity in the data stream. In the PD2 analysis, dimensional changes of the system, i.e. the number of variables involved in the generation of its output (heartbeat interval time series), are determined within small “points” of time (beat-by-beat) irrespective of whether the system is stochastic or deterministic and nonstationary. PD2 was determined from heartbeat interval time series of digitized 40 min electrocardiograms (sampling rate 1200 Hz; supine posture) in 23 heart transplant recipients (HTR; 9 adults, 14 children; 0.07–7.7 yrs after transplantation) and 21 healthy control subjects (CTL; 13 adults, 8 children). PD2 (±SD) averaged 5.4±0.7 (adults) and 5.4±0.6 (children), respectively. The noninteger number of the dimensional estimate suggests that the normal heartbeat exhibits low-dimensional chaotic dynamics. In the HTR group, irrespective of age, PD2 was reduced to ∼1 early after transplantation but would not seem to attain normal control values within the time interval studied in long-term survivors (6–7 yrs). The initial breakdown of nonlinear chaotic dynamics along with the recurrence of low-dimensional deterministic dynamics with time after transplantation would suggest a recovery of cardiac control and heartbeat fluctuations that would be attributable to reorganization of the viable intrinsic cardiac nervous system or re-innervation of the extrinsic autonomic nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burke MN, McGinn AL, Homans DC, Christensen BV, Kubo SH, Wilson RF: Evidence for functional sympathetic re-innervation of left ventricle and coronary arteries after orthotopic cardiac transplantation in humans. Circulation 91, 72–78 (1995)

    Article  PubMed  CAS  Google Scholar 

  2. Kaye DM, Ester M, Kingwell B, McPherson G, Esmore D, Jennings G: Functional and neurochemical evidence for partial cardiac sympathetic reinnervation after cardiac transplantation in humans. Circulation 88, 1110–1118 (1995)

    Article  Google Scholar 

  3. Schwaiger M, Hutchins GD, Kolff V, Rosenspire K, Haka MS, Mallette S, Deeb GM, Abrama GD, Wieland D: Evidence for regional catecholamine uptake and storage sites in the transplanted human heart by positron emission tomography. J. Clin. Invest. 87, 1681–1690 (1991)

    Article  PubMed  CAS  Google Scholar 

  4. Wilson RF, Christensen BV, Olivari MT, Simon A, White CW, Laxson DD: Evidence for structural sympathetic re-innervation after orthotopic cardiac transplantation in humans. Circulation 83, 1210–1220 (1991)

    Article  PubMed  CAS  Google Scholar 

  5. Wilson RF, Laxson DD, Christensen BV, McGinn AL, Kubo SH: Regional differences in sympathetic re-innervation after human orthotopic cardiac transplantation. Circulation 88, 165–171 (1993)

    Article  PubMed  CAS  Google Scholar 

  6. Arrowood JA, Goudreau E, Minisi J, Davis AB, Mohanty PK: Evidence against re-innervation of cardiac vagal afferents after human orthotopic cardiac transplantation. Circulation 92, 402–408 (1995)

    Article  PubMed  CAS  Google Scholar 

  7. Goldberger AL, Rigney DR, West BJ: Chaos and fractals in human physiology. Sci. Am. 262, 42–49 (1990)

    Article  PubMed  CAS  Google Scholar 

  8. Kitney RI, Rompelman O: The Study of Heart-Rate Variability. Oxford University Press, Oxford (1980)

    Google Scholar 

  9. Babloyantz A, Desthexhe A: Is the heart a periodic oscillator? Biol Cybern. 58, 203–211 (1988)

    Article  PubMed  CAS  Google Scholar 

  10. Mayer-Kress G, Yates FE, Benton L, Keidel M, Tirsch W, Pöppl SJ, Geist K: Dimensional analysis of nonlinear oscillations in brain, heart, and muscle. Math. Biosci. 90, 155–182 (1988)

    Article  Google Scholar 

  11. Skinner, JE, Carpeggiani C, Landisman CE, Fulton KW: Correlation dimension of heartbeat intervals is reduced in conscious pigs by myocardial ischemia. Circ. Res. 68, 966–976 (1991)

    Article  PubMed  CAS  Google Scholar 

  12. Skinner JE, Pratt CM, Vybiral T: A reduction in the correlation dimension of heartbeat intervals precedes imminent ventricular fibrillation in human subjects. Am. Heart J. 125, 731–743 (1993)

    Article  PubMed  CAS  Google Scholar 

  13. Skinner JE, Molnar M, Vybiral T, Mitra M: Application of chaos theory to biology and medicine. Integr. Physiol. Behav. Sci. 27, 39–53 (1992)

    Article  PubMed  CAS  Google Scholar 

  14. Skinner JE, Molnar M, Tomberg C: The point correlation dimension: performance with nonstationary surrogate data and noise. Integr. Physiol. Behav. Sci. 29, 217–234 (1994)

    Article  PubMed  CAS  Google Scholar 

  15. Elbert T, Ray WJ, Kowalik ZJ, Skinner JE, Graf KE, Birbaumer N: Chaos and physiology: deterministic chaos in excitable cell assemblies. Physiol. Rev. 74, 1–47 (1994)

    PubMed  CAS  Google Scholar 

  16. Grassberger P, Procaccia I: Measuring the strangeness of strange attractors. Physica 9D, 189–208)1983)

    Google Scholar 

  17. Farmer JD, Ott E, Yorke JA: The dimension of chaotic attractors. Physica D7, 53–180 (1983)

    Google Scholar 

  18. Glass L, Malta CP: Chaos in multi-looped negative feedback systems. J. Theor. Biol. 145, 217–223 (1990)

    Article  PubMed  CAS  Google Scholar 

  19. Liem LB, Dibiase A, Schroeder JS: Arrythmia and clinical electrophysiology of the transplanted human heart. Semn. Thorac. Cardiovasc. Surg. 2, 271–278 (1990)

    CAS  Google Scholar 

  20. Murphy DA, O’Blenes S, Hanna BD, Armour JA: Functional capacity of nicotine-sensitive canine intrinsic cardiac neurone to modify the heart. Am. J. Physiol. 266 (Regulatory Integrative Comp. Physiol. 35), R1127–R1135 (1994)

    PubMed  CAS  Google Scholar 

  21. Peng C-K, Mietus J, Hausdorff JM, Havlin S, Stanley HE, Goldberger AL: Long-range anticorrelations and non-gausssian behavior of the heartbeat. Phys. Rev. Lett. 70, 1343–1346 (1993)

    Article  Google Scholar 

  22. Peng C-K, Havlin S, Stanley HE, Goldberger AL: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5, 82–87 (1995)

    Article  PubMed  CAS  Google Scholar 

  23. Cerretelli P, Marconi C, Meyer M, Ferretti G, Grassi B: Gas exchange kinetics in heart transplant recipients. Chest 101, 199S-205S (1992)

    PubMed  CAS  Google Scholar 

  24. Hsu DT, Garofano RP, Douglas JM, Michler RE, Quaegebeur JM, Gersony WM, Addonizio LJ: Exercise performance after pediatric heart transplantation. Circulation 88, 238–242 (1993)

    Google Scholar 

  25. Meyer M, Marconi C, Grassi B, Rieu M, Cerretelli P, Cabrol C: Adjustment of cardiac output to step exercise in heart transplant recipients. Applied Cardiopulmonary Pathophysiology 4, 213–223 (1992)

    Google Scholar 

  26. Meyer M, Rahmel A, Marconi C, Grassi B, Cerretelli P, Cabrol C: Adjustment of cardiac output to step exercise in heart transplant recipients. Z. Kardiol. 83: Supp. 3, 103–109 (1994)

    PubMed  Google Scholar 

  27. Grassi B, Marconi C, Meyer M, Cerretelli P: Gas exchange and cardiovascular kinetics upon different exercise protocols in heart transplant recipients. J. Appl. Physiol. 82, 1952–1962 (1997)

    PubMed  CAS  Google Scholar 

  28. Goldberger AL, West B: Chaos in physiology. In: Chaos in Biological Systems. AV Holden, H Degn, LF Olsen (eds.), Plenum, New York, pp. 1–5 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Meyer MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Basel AG

About this chapter

Cite this chapter

Meyer, M. et al. (1998). Dynamical Analysis of Heartbeat Interval Time Series After Cardiac Transplantation. In: Losa, G.A., Merlini, D., Nonnenmacher, T.F., Weibel, E.R. (eds) Fractals in Biology and Medicine. Mathematics and Biosciences in Interaction. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8936-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8936-0_10

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9834-8

  • Online ISBN: 978-3-0348-8936-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics