Advertisement

Metric Critical Point Theory 2. Deformation Techniques

  • A. Ioffe
  • E. Schwartzman
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 98)

Abstract

The paper contains several results relating to deformation techniques in critical point theory for continuous functions on metric spaces, including two deformation theorems, an extension of the mountain pass theorem and a dense solvability theorem for potential set-valued operators associated with critical points of Lipschitz perturbations of quadratic functional in Hilbert spaces.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Ambrosetti, Critical Points and Nonlinear Variational Problems, Societé Math. de France, publ. 49, Suppl. Bull. S.M.F. Tome 120, 1992Google Scholar
  2. [2]
    H. Brezis and L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math. 44 (1991), 939–963.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    J.-N. Corvellec, Morse theory for continuous functionals, J. Math. Ana. Appl. 196 (1995), 1050–1072.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Chang, Kung Ching, Infinite Dimensional Morse Theory and Multiple Solution Problem, Birkhäuser 1993.Google Scholar
  5. [5]
    F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley 1983.Google Scholar
  6. [6]
    J.-N. Corvellec, M. Degiovanni and M. Marzocchi, Deformation properties of continuous functionals and critical point theory, Topological Methods Nonlinear Anal. 1 (1993), 151–171.MathSciNetzbMATHGoogle Scholar
  7. [7]
    M. Degiovanni and M. Marzocchi, A critical point theory for nonsmooth functionals, Ann. Mat. Pura Appl., Ser. IV 167 (1994), 73–100.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincaré-Analyse Non-linéaire 6, no. 5 (1989), 321–330.MathSciNetzbMATHGoogle Scholar
  9. [9]
    A. Ioffe and E. Schwartzman, Metric critical point theory 1. Morse regularity and homotopic stability of a minium, J. Math. Pures Appl. 75 (1996), 125–153.MathSciNetzbMATHGoogle Scholar
  10. [10]
    G. Katriel, Mountain pass theorems and global homeomorphism theorems, Ann. Inst. H. Poincaré—Analyse Non-linéaire 11 (1994), 189–209.MathSciNetzbMATHGoogle Scholar
  11. [11]
    R.S. Palais, Critical point theory and minimax principle, in Global Analysis, Proc. Symp. Pure Math. Berkley, 1968, vol XV, Amer. Math. Soc. (1970), 185–212.MathSciNetGoogle Scholar
  12. [12]
    P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math., vol 65, Amer. Math. Soc. 1986.Google Scholar
  13. [13]
    N.K. Rybarska, T.V. Tsachev and M.I. Karastanov, Speculation about mountains, preprint 1995.Google Scholar
  14. [14]
    I. Shafrir, A deformation lemma, C.R. Acad. Sci. Paris 313 (1991), 599–602.MathSciNetzbMATHGoogle Scholar
  15. [15]
    Shi Shuzhong, Ekeland’s variational principle and the mountain pass lemma, Acta Mat. Sinica 4 (1985), 348–355.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 1997

Authors and Affiliations

  • A. Ioffe
    • 1
  • E. Schwartzman
    • 1
  1. 1.Department of Mathematics, TechnionHaifaIsrael

Personalised recommendations