Characterization of the Periodic and Anti-Periodic Spectra of Nonselfadjoint Hill’s Operators

  • J.-J. Sansuc
  • V. Tkachenko
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 98)


The necessary and sufficient conditions are given for a sequence of complex numbers to be the periodic (or anti-periodic) spectrum of Hill’s operator.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. C. Titchmarsh: Eigenfunction expansions associated with second-order differential equations, Oxford, Claredon Press, 1958.zbMATHGoogle Scholar
  2. [2]
    V. A. Marchenko: Sturm-Liouville operators and applications, Birkhäuser, Basel, 1986.zbMATHGoogle Scholar
  3. [3]
    V. A. Marchenko and I. V. Ostrovskii: Characterization of the spectrum of Hill’s operator, Mathem.Sborn., 1975, 97, 4, 540–606; English transl. in Math. USSR-Sb. 26 (175).Google Scholar
  4. [4]
    P. Lax: Trace formulas for the Schroedinger operator, CPAM, 1994, 47, 4, 503–512.MathSciNetzbMATHGoogle Scholar
  5. [5]
    V. A. Tkachenko: Discriminants and generic spectra of nonselfadjoint Hill’s operators, Advances in Sov. Math., AMS, 1994, 19, 41–71.MathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 1997

Authors and Affiliations

  • J.-J. Sansuc
    • 1
  • V. Tkachenko
    • 2
  1. 1.U.F.R. de MathématiquesUniversité Paris 7 Denis DiderotParisFrance
  2. 2.Department of Mathematics and Computer ScienceBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations