Advertisement

Israel Glazman, Mathematician and Personality

  • Yu. Lyubich
  • V. Tkachenko
Conference paper
Part of the Operator Theory: Advances and Applications book series (OT, volume 98)

Abstract

December 21, 1996 would have been the 80-th birthday of Israel Glazman. Born in Odessa, he graduated from Odessa University where his teacher was Mark Krein. After a short period of working in the same University, he was drafted into the army, and returned home to Odessa in November 1940. From July 1941 until the very end of World War II he was an artillery officer at the front lines and took part in the heavy military actions in Stalingrad, Kursk, and Kiev.

Keywords

Dissipative Operator Soviet Authority Mathematical Gift Musical Talent Singular Differential Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. I. Akhiezer, I. M. Glazman, Theory of Linear Operators in Hilbert Space. Gostechisdat, Moscow, 1950.Google Scholar
  2. 2.
    N. I. Akhiezer, I. M. Glazman, Theory of Linear Operators in Hilbert Space. Nauka, Moscow, 1966 (English translation: N.Y: F. Ungar Publishing Co., 1961–1963).Google Scholar
  3. 3.
    N. I. Akhiezer, I. M. Glazman, Theory of Linear Operators in Hilbert Space. Vyshcha Schkola, Kharkov, I, 1977; II, 1978 (English translation: Boston, Pitman Adv. Publ. Progr., 1981).Google Scholar
  4. 4.
    N. Dunford, J. T. Schwartz, Linear Operators. II, New York, Interscience Publ., 1963.zbMATHGoogle Scholar
  5. 5.
    I. M. Glazman, To a theory of singular differential operators. Uspechi Mat. Nauk, 5, 6, 1960.Google Scholar
  6. 6.
    I. M. Glazman, Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators. Nauka, Moscow, 1963.Google Scholar
  7. 7.
    I. M. Glazman, On spectral nature of multidimensional boundary problems. Doklady Ak. Nauk, 82, 2, 1952.Google Scholar
  8. 8.
    I. M. Glazman, On an analogue of extension theory of Hermitian operators and non-symmetric one-dimensional boundary problem on a semi-axis. Doklady Ak. Nauk, 13, 3, 1957.Google Scholar
  9. 9.
    I. M. Glazman, On decomposability in a system of eigenvectors of dissipative operators. Uspechi Mat. Nauk, 13, 3, 1958.MathSciNetGoogle Scholar
  10. 10.
    I. M. Glazman, On gradient relaxation for non-quadratic functionals. Doklady Ak. Nauk, 154, 5, 1964.MathSciNetGoogle Scholar
  11. 11.
    I. M. Glazman, Relaxation on surfaces with saddle-points. Doklady Ak. Nauk, 161, 4, 1965.MathSciNetGoogle Scholar
  12. 12.
    I. M. Glazman, Yu. I. Lyubich, Finite-Dimensional Linear Analysis. Nauka, Moscow, 1969 (English translation: MIT Press, Cambridge Mass.-London, 1974).Google Scholar
  13. 13.
    P. R. Halmos, The heart of Mathematics. Amer. Math. Monthly, 87, 1980.Google Scholar
  14. 14.
    B. R. Mukminov, On expansion in series of eigenfunctions of dissipative kernels. Doklady Ak. Nauk, 99, 4, 1954.MathSciNetGoogle Scholar
  15. 15.
    J. von Neumann, Mathematische Grundlagen der Quantenmechanik, Berlin, Springer, 1932.zbMATHGoogle Scholar
  16. 16.
    D. Shin, On quasi-differential operators in a Hilbert space. Math. Sbornik, 13, 1943.Google Scholar
  17. 17.
    M. H. Stone, Linear Transformation in Hilbert Space and their Applications to Analysis, New York, Amer. Math. Soc. Colloq. Publications, 15, 1932.Google Scholar
  18. 18.
    W. Windau, Uber lineare Differentialgleichungen vierter Ordnung mit Singularitäten und die zugehörigen Darstellung willkürliche Funktionen. Math. Ann., 83, 1921.Google Scholar

Copyright information

© Springer Basel AG 1997

Authors and Affiliations

  • Yu. Lyubich
    • 1
  • V. Tkachenko
    • 2
  1. 1.Department of MathematicsTechnion - Israel Institute of TechnologyHaifaIsrael
  2. 2.Department of Mathematics and Computer ScienceBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations