Skip to main content

Metastability and Typical Exit Paths in Stochastic Dynamics

  • Conference paper
European Congress of Mathematics

Part of the book series: Progress in Mathematics ((PM,volume 169))

Abstract

In this paper we review and discuss results on metastability. We consider ergodic aperiodic Markov chains with exponentially small transition probabilities and we give a complete description of the typical tube of trajectories during the first excursion outside a general domain Q.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Ben Arous, R. Cerf, “Metastability of the three dimensional Ising model on a torus at very low temperature”, Preprint 1995.

    Google Scholar 

  2. M. Cassandro, A. Galves, “Language acquisition and change in generalized GW model”, Preprint MOL 4 1995.

    Google Scholar 

  3. M. Cassandro, A. Galves, E. Olivieri, M.E. Vares, “Metastable behavior of stochastic dynamics: a pathwise approach”, J. Stat. Phys. 35, 603–634 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  4. O. Catoni, “Rough large deviations estimates for simulated annealing. Application to exponential schedules”, Ann. Prob. 20, 1109–1146 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  5. O. Catoni, “Sharp large deviations estimates for simulated annealing algorithms”, Ann. Inst. H. Poincaré 27 no. 3, 291–382 (1991).

    MathSciNet  MATH  Google Scholar 

  6. O. Catoni, R. Cerf, “The exit path of a Markov chain with rare transitions”, Preprint 1995.

    Google Scholar 

  7. R. Cerf, “Une thé orie asymptotique des algorithmes gé né tiques” These Universite Montpellier II (1994).

    Google Scholar 

  8. F. Cesi, F. Martinelli, “On the layering transition of an SOS surface interacting with a wall. I. Equilibrium results” J. Stat. Phys. 82, 823 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  9. T.S. Chiang, Y. Chow, “A limit theorem for a class of inhomogeneous Markov processes”, Ann. Prob. 17, 1483–1502 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  10. T.S. Chiang, Y. Chow, “On the Exit Problem from a Cycle of Simulated Annealing Processes with application — A Backward Equation Approach”, Tech. Rept. Inst. of Math. Academia Sinica, 1995.

    Google Scholar 

  11. E. Cirillo, E. Olivieri, “Metastability and nucleation for the Blume-Capel model: different mechanisms of transition” Journ. Stat. Phys. 83, 473–571 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Dehghanpour, R.H. Schonmann, “Metropolis dynamics relaxation via nucleation and growth”, preprint.

    Google Scholar 

  13. P. Dehghanpour, R.H. Schonmann, “A nucleation-and-growth model”, Probab. Th. Rel. Fields, to appear.

    Google Scholar 

  14. V.R. Eston, A. Galves, C.M. Jacobi, R. Langevin, “Dominance switch between two interacting species and metastability” Atas do II Simposio dos Ecosistemas da costa sul Brasileira, CACIESP, Sau Paulo (1988).

    Google Scholar 

  15. M.I. Freidlin, A.D. Wentzell, “Random Perturbations of Dynamical Systems”, Springer-Verlag (1984).

    Google Scholar 

  16. A. Galves, B. Schmitt, “Occurrence of rare events for mixing dynamical systems” Ann. Inst. H. Poincaré Phys. Theor. 52, 267 (1990).

    MathSciNet  MATH  Google Scholar 

  17. H.O. Georgii, “Gibbs measures and Phase Transitions”, Walter de Gruyter (de Gruyter Studies in Mathematics Vol. 9), Berlin, New York (1988).

    Google Scholar 

  18. S. Glance, B. Huberman, “The dynamics of social dilemmas”, Scient. Amer. March 76 (1994).

    Google Scholar 

  19. R. Holley, “Possible rates of convergence in finite range, attractive spin systems”, Contemp. Math. 41, 215 (1985).

    Article  MathSciNet  Google Scholar 

  20. R. Holley, “Rapid convergence to equilibrium in one dimensional stochastic Ising models”, Ann. Prob. 13, 72–89 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Kotecky, E. Olivieri, “Droplet dynamics for asymmetric Ising model” Journ. Stat. Phys. 70, 1121–1148, (1993).

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Kotecky, E. Olivieri, “Shapes of growing droplets — a model of escape from a matastable phase” Journ. Stat. Phys. 75, 409–507, (1994).

    Article  MathSciNet  MATH  Google Scholar 

  23. T.M. Liggett, Interacting particle systems, Springer Verlag (1985).

    Google Scholar 

  24. F. Manzo, E. Olivieri, “Relaxation patterns for competing metastable states: a nucleation and growth model”, preprint.

    Google Scholar 

  25. F. Martinelli, E. Olivieri, “Approach to equilibrium of Glauber dynamics in the one phase region. I: the attractive case”, Comm. Math. Phys. 161, 447–486 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  26. F. Martinelli, E. Olivieri, “Approach to equilibrium of Glauber dynamics in the one phase region II: the general case”, Comm. Math. Phys. 161, 487–514 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  27. F. Martinelli, E. Olivieri, R.H. Schonmann, “For 2-d lattice spin systems weak mixing implies strong mixing”, Comm. Math. Phys. 165, 33–47 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  28. F. Martinelli, E. Olivieri, E. Scoppola, “On the Swendsen and Wang dynamics II: Critical droplets and homogeneous nucleation at low temperature for the two dimensional Ising model”, J. Stat. Phys. 62, 135–159 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  29. F. Martinelli, E. Olivieri, E. Scoppola, “Metastability and exponential approach to equilibrium for low temperature stochastic Ising models”, J. Stat. Phys. 61, 1105 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  30. F. Martinelli, E. Olivieri, E. Scoppola, “On the Swendsen and Wang dynamics I: Exponential convergence to equilibrium”, J. Stat. Phys. 62, 117–134 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  31. E.J. Neves, “A discrete variational problem related to Ising droplets at low temperature”, J. Stat. Phys. 80, 103–123 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  32. F.R. Nardi, E. Oivieri,“Low temperature stochastic dynamics for an Ising model with alternating field”. Markov Proc. Rel. Field 2, 117–166 (1996).

    MATH  Google Scholar 

  33. E.J. Neves, R.H. Schonmann, “Behaviour of droplets for a class of Glauber dynamics at very low temperatures” Comm. Math. Phys. 137, 209 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  34. E.J. Neves, R.H. Schonmann, “Critical Droplets and Metastability for a Glauber Dynamics at Very Low Temperatures”, Prob. Theor. Rel. Fields 91, 331 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  35. C. Newman, J.E. Cohen, C. Kipnis, “Neo-darwinian evolution implies punctuated equilibria”, Nature 315, 400 (1985).

    Article  Google Scholar 

  36. P. Niyogi, R.C. Berwick, ’Formalizing Triggers: a Learning model for finite spaces’, Preprint MIT 1993.

    Google Scholar 

  37. E. Olivieri, E. Scoppola, “Markov chains with exponentially small transition probabilities: First exit problem from a general domain — I. The reversible case” JSP 79, 613 (1995).

    MathSciNet  MATH  Google Scholar 

  38. E. Olivieri, E. Scoppola, “Markov chains with exponentially small transition probabilities: First exit problem from a general domain — II The general case”. JSP 84, 987–1041 (1996).

    MathSciNet  MATH  Google Scholar 

  39. C. Peixoto, “Metastable Behavior of Low Temperature Glauber dynamics with stirring”, J. Stat. Phys. 80, 1165–1184 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  40. O. Penrose, J.L. Lebowitz, “Rigorous treatment of metastable states in van der Waals theory”, J. Stat. Phys. 3, 211–236 (1971).

    Article  MathSciNet  Google Scholar 

  41. O. Penrose, J.L. Lebowitz, “Towards a rigorous molecular theory of metastability” In Fluctuation Phenomena (second ed.) E.W. Montroll, J.L. Lebowitz ed., North Holland Publ. (1987).

    Google Scholar 

  42. D. Ruelle, Statistical Mechanics, Benjamin Inc. (1969).

    Google Scholar 

  43. R. Schonmann, “The pattern of escape from metastability of a stochastic Ising model”, Comm. Math. Phys. 147, 231–240 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  44. R. Schonmann, “Slow droplet driven relaxation of stochastic Ising models in the vicinity of the phase coexistence region”, Comm. Math. Phys. [bd161, 1–49 (1994).

    Google Scholar 

  45. R. Schonmann, “Theorems and conjectures on the droplet driven relaxation of stochastic Ising model” in Probability and Phase Transition, Ed. G. Grimmett, NATO ASI Series, Kluwer Ac. Publ. pg. 265–301 (1994).

    Google Scholar 

  46. R. Schonmann, S. Shlosman, “Wulff droplets and the metastable relaxation of kinetic Ising models”, preprint.

    Google Scholar 

  47. R. Schonmann, S. Shlosman, “Complete Analiticity for 2D Ising completed”, Comm. Math. Phys. 170, 453 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  48. E. Scoppola, “Renormalization group for Markov chains and application to metastability”, Jour. Stat. Phys. 73, 83 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  49. E. Scoppola, “Metastability for Markov chains: a general procedure based on renormalization group ideas” in Probability and Phase Transition, Ed. G. Grimmett, NATO ASI Series, Kluwer Ac. Publ. (1994).

    Google Scholar 

  50. Ya.G. Sinai, “Theory of Phase Transition: Rigorous Results”, Akademiai Kiado, Budapest (1982).

    Google Scholar 

  51. H. Tomita, S. Miyashita, “Statistical properties of the relaxation process of metastable states in the kinetic Ising model”, Phys. Rev. B. Condensed Matter 46, 8886–8893 (1992).

    Article  Google Scholar 

  52. A. Touvé, “Cycle Decompositions and Simulated Annealing”. SIAM J. Control Optim. To appear.

    Google Scholar 

  53. A. Trouvé, “Rough large deviation estimates for the optimal convergence speed exponent of generalized simulated annealing algorithms”, Ann. Inst. H. Poincaré. To appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Basel AG

About this paper

Cite this paper

Olivieri, E., Scoppola, E. (1998). Metastability and Typical Exit Paths in Stochastic Dynamics. In: Balog, A., Katona, G.O.H., Recski, A., Sza’sz, D. (eds) European Congress of Mathematics. Progress in Mathematics, vol 169. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8898-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8898-1_7

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9819-5

  • Online ISBN: 978-3-0348-8898-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics