Skip to main content

Microstructures, Phase Transitions and Geometry

  • Conference paper

Part of the book series: Progress in Mathematics ((PM,volume 169))

Abstract

Microstructures are structures on a scale between the atomic scale and the macroscopic scale on which we usually make observations. They are abundant in natural and man-made materials, and often the microstructure optimizes a material’s properties (maximum strength at given weight, minimal energy, maximum or minimum permeability, … ). Some materials can change their internal microstructure and hence their properties in response to external influences. They are sometimes referred to as ‘smart materials’and are of great technological interest.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Abeyaratne, C. Chu and R.D. James, Kinetics of materials with wiggly energies: theory and application to the evolution of twinning microstructures in a Cu-Al-Ni shape memory alloy, Phil. Mag. A 73 (1996), 457–497.

    Google Scholar 

  2. G. Alberti and S. Müller, in preparation.

    Google Scholar 

  3. G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal. 23 (1992), 1482–1518.

    Article  MathSciNet  MATH  Google Scholar 

  4. W.K. Allard, On the first variation of a varifold, Ann. Math. 95 (1972), 417–491.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Aumann and S. Hart, Bi-convexity and bi-martingales, Israel J. Math. 54 (1986), 159–180.

    Article  MathSciNet  MATH  Google Scholar 

  6. E.J. Balder, A general approach to lower semicontinuity and lower closure in optimal control theory, SIAM J. Control and Optimization 22 (1984), 570–598.

    Article  MathSciNet  MATH  Google Scholar 

  7. J.M. Ball, A version of the fundamental theorem for Young measures, in: PDE’s and Continuum Models of Phase Transitions (M. Rascle, D. Serre, M. Slemrod, eds.), Lecture Notes in Physics 344, Springer, 1989, 207–215.

    Google Scholar 

  8. J.M. Ball, Dynamics and minimizing sequences, in: Problems involving change of type (K. Kirchgässner, ed.), Lecture Notes in Physics 359, Springer, 1990, 3–16.

    Google Scholar 

  9. J.M. Ball, P.J. Holmes, R.D. James, R.L. Pego and P.J. Swart, On the dynamics of fine structure, J. Nonlin. Sci. 1 (1991), 17–70.

    Article  MathSciNet  MATH  Google Scholar 

  10. J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy, Arch. Rat. Mech. Anal. 100 (1987), 13–52.

    Article  MathSciNet  MATH  Google Scholar 

  11. J.M. Ball and R.D. James, Proposed experimental tests of a theory of fine microstructure and the two-well problem, Phil. Trans. Roy. Soc. London A 338 (1992), 389–450.

    Article  MATH  Google Scholar 

  12. J.M. Ball and R.D. James, book in preparation.

    Google Scholar 

  13. H. Berliocchi and J.M. Lasry, Inté grandes normales et mesures paramé tré es en calcul des variations, Bull. Soc. Math. France 101 (1973), 129–184.

    MathSciNet  MATH  Google Scholar 

  14. K. Bhattacharya, Comparison of geometrically nonlinear and linear theories of martensitic transformation, Cont. Mech. Thermodyn. 5 (1993), 205–242.

    Article  MATH  Google Scholar 

  15. K. Bhattacharya, N. Firoozye, R.D. James and R.V. Kohn, Restrictions on microstructure, Proc. Roy. Soc. Edinburgh, A 124 (1994), 843–878.

    Article  MathSciNet  MATH  Google Scholar 

  16. E. Casadio-Tarabusi, An algebraic characterization of quasi-convex functions, Ricerche Mat. 42 (1993), 11–24.

    MathSciNet  Google Scholar 

  17. M. Chipot and D. Kinderlehrer, Equilibrium configurations of crystals, Arch. Rat. Mech. Anal. 103 (1988), 237–277.

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Dacorogna, Direct methods in the calculus of variations, Springer, 1989.

    Google Scholar 

  19. B. Dacorogna and P. Marcellini, Thé orèmes d’existence dans les cas scalaire et vectoriel pour les é quations de Hamilton-Jacobi, C.R.A.S. Paris 322 (1996), Serie I, 237–240.

    MathSciNet  MATH  Google Scholar 

  20. B. Dacorogna and P. Marcellini, Sur le problème de Cauchy-Dirichlet pour les systèmes d’é quations non liné aires du premier ordre, C.R.A.S. Paris 323 (1996), Serie I, 599–602.

    MathSciNet  MATH  Google Scholar 

  21. B. Dacorogna and P. Marcellini, General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases, Acta. Math. 178 (1997), 1–37.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Demoulini, Young measure solutions for a nonlinear parabolic equation of forward-backward type, SIAM J. Math. Anal. 27 (1996), 378–403.

    Article  MathSciNet  Google Scholar 

  23. R.J. DiPerna, Compensated compactness and general systems of conversation laws, Trans. Amer. Math. Soc. 292 (1985), 383–420.

    Article  MathSciNet  MATH  Google Scholar 

  24. R.J. DiPerna and A.J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys. 108 (1987), 667–689.

    Article  MathSciNet  Google Scholar 

  25. G. Dolzmann and S. Müller, Microstructures with finite surface energy: the two-well problem, Arch. Rat. Mech. Anal. 132 (1995), 101–141.

    Article  MATH  Google Scholar 

  26. R.E. Edwards, Functional analysis, Holt, Rinehart and Winston, 1965.

    MATH  Google Scholar 

  27. J.L. Ericksen, Some phase transitions in elastic crystals, Arch. Rat. Mech. Anal. 73 (1980), 99–124.

    Article  MathSciNet  MATH  Google Scholar 

  28. J.L. Ericksen, The Cauchy and Born hypothesis for crystals, in: Phase transformations and material instabilities in solids (M.E. Gurtin, ed.), Academic Press, 1984, 61–77.

    Google Scholar 

  29. J.L. Ericksen, Weak martensitic transformations in Bravais lattices, Arch. Rat. Mech. Anal. 107 (1989), 23–36.

    Article  MathSciNet  MATH  Google Scholar 

  30. I. Fonseca, Phase transitions for elastic solid materials, Arch. Rat. Mech. Anal. 107 (1989), 195–223.

    Article  MathSciNet  MATH  Google Scholar 

  31. I. Fonseca, D. Brandon and P. Swart, Dynamics and oscillatory microstructure in a model of displacive phase transformations, in: Progress in partial differential equations, the Metz surveys 3 (M. Chipot, ed.), Pitman, 1994, 130–144.

    Google Scholar 

  32. I. Fonseca, S. Müller and P. Pedregal, Analysis of concentration and oscillation effects generated by gradients, to appear in SIAM J. Math. Anal.

    Google Scholar 

  33. G. Friesecke, Static and dynamic problems in nonlinear mechanics, Ph.D. thesis, Heriot-Watt University, Edinburgh, 1993.

    Google Scholar 

  34. G. Friesecke and J.B. McLeod, Dynamics as a mechanism preventing the formation of finer and finer microstructure, Arch. Rat. Mech. Anal. 133 (1996), 199–247.

    Article  MathSciNet  MATH  Google Scholar 

  35. P. Gé rard, Mesures semi-classique et ondes de Bloch, in: Equations aux dé rivé es partielles, exposé XVI, sé minaire 1990-91, Ecole Polytechnique, Palaiseau.

    Google Scholar 

  36. P. Gé rard, Microlocal defect measures, Comm. PDE 16 (1991), 1761–1794.

    Article  MATH  Google Scholar 

  37. M. Gromov, Partial differential relations, Springer, 1986.

    Google Scholar 

  38. K.-H. Hoffmann and T. RoubÍček, Optimal control of a fine structure, Appl. Math. Optim. 30 (1994), 113–126.

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Hubert, Zur Theorie der zweiphasigen Domänenstrukturen in Supraleitern und Ferromagneten, Phys. Status Solidi 24 (1967), 669–682.

    Article  Google Scholar 

  40. A. & C. Ionescu Tulcea, Topics in the theory of liftings, Springer, 1969.

    Google Scholar 

  41. A. Khachaturyan, Some questions concerning the theory of phase transformations in solids, Soviet Physics-Solid State 8 (1967), 2163–2168.

    Google Scholar 

  42. A. Khachaturyan, Theory of structural transformations in solids, Wiley, 1983.

    Google Scholar 

  43. A. Khachaturyan and G. Shatalov, Theory of macroscopic periodicity for a phase transition in the solid state, Soviet Physics JETP 29 (1969), 557–561.

    Google Scholar 

  44. D. Kinderlehrer, Remarks about equilibrium configurations of crystals, in Material instabilities in continuum mechanics, Heriot-Watt Symposium, (J.M. Ball, ed.), Oxford Univ. Press, 1988, 217–242.

    Google Scholar 

  45. D. Kinderlehrer and P. Pedregal, Characterization of Young mesures generated by gradients, Arch. Rat. Mech. Anal. 115 (1991), 329–365.

    Article  MathSciNet  MATH  Google Scholar 

  46. D. Kinderlehrer and P. Pedregal, Gradient Young measure generated by sequences in Sobolev spaces, J. Geom. Analysis 4 (1994), 59–90.

    Article  MathSciNet  MATH  Google Scholar 

  47. B. Kirchheim, in preparation.

    Google Scholar 

  48. R.V. Kohn, The relationship between linear and nonlinear variational models of coherent phase transitions, in: Trans. 7th Army Conf. on applied mathematics and computing, (F. Dressel, ed.), 1989.

    Google Scholar 

  49. R.V. Kohn and S. Müller, Branching of twins near an austenite/twinned-martensite interface, Phil. Mag. A 66 (1992), 697–715.

    Google Scholar 

  50. R.V. Kohn and S. Müller, Surface energy and microstructure in coherent phase transitions, Comm. Pure Appl. Math. 47 (1994), 405–435.

    Article  MathSciNet  MATH  Google Scholar 

  51. J. Kristensen, Finite functionals and Young measures generated by gradients of Sobolev functions, Ph.D. Thesis, Technical University of Denmark, Lyngby.

    Google Scholar 

  52. J. Kristensen, On the non-locality of quasiconvexity, to appear in Ann. IHP Anal. non liné aire.

    Google Scholar 

  53. N.H. Kuiper, On C1 isometric embeddings I., Nederl.-Akad.-Wetensch.-Proc, A 58 (1955), 545–556.

    Google Scholar 

  54. E. Lifshitz, On the magnetic structure of iron, J. Phys. 8 (1944), 337–346.

    MathSciNet  Google Scholar 

  55. P.-L. Lions and T. Paul, Sur les mesures de Wigner, Rev. Mat. Iberoamer-icana 9 (1993), 553–618.

    Article  MathSciNet  MATH  Google Scholar 

  56. M. Luskin, On the computation of crystalline microstructure, Acta Num. 5 (1996), 191–258.

    Article  MathSciNet  Google Scholar 

  57. J.P. Matos, Young measures: regularity results in the two well problem, in: Int. Conf. on Differential Equations, EQUADIFF 91, Barcelona 1991, (C. Perello, C. Simo, J. Sola-Morales, eds.), World Sci. Publ., 1993, 736–739.

    Google Scholar 

  58. J. Matousek and P. Plechac, On functional separately convex hulls, to appear in J. Discrete Comput. Geom.

    Google Scholar 

  59. P.-A. Meyer, Probability and potentials, Blaisdell, 1966.

    Google Scholar 

  60. C.B. Morrey, Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math. 2 (1952), 25–53.

    Article  MathSciNet  MATH  Google Scholar 

  61. C.B. Morrey, Multiple integrals in the calculus of variations, Springer, 1966.

    Google Scholar 

  62. S. Müller, Singular perturbations as a selection criterion for periodic minimizing sequences, Calc. Var. 1 (1993), 169–204.

    Article  MATH  Google Scholar 

  63. S. Müller, Microstructure and the calculus of variations, Nachdiplomvor-lesung ETH Zürich, in preparation.

    Google Scholar 

  64. S. Müller, Variational models of microstructure, in Proc. CIME Summer School, Cetraro, 1996, in preparation.

    Google Scholar 

  65. S. Müller, A sharp version of Zhang’s theorem, preprint.

    Google Scholar 

  66. S. Müller and V. Sverák, Attainment results for the two-well problem by convex integration, Geometric analysis and the calculus of variations (J. Jost, ed.), International Press, 1996, 239–251.

    Google Scholar 

  67. S. Müller and V. Sverák, in preparation.

    Google Scholar 

  68. F. Murát and L. Tartar, On the relation between Young measures and H-measures, in preparation.

    Google Scholar 

  69. J. Nash, C1 isometric embeddings, Ann. Math. 60 (1954), 383–396.

    Article  MathSciNet  MATH  Google Scholar 

  70. G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal. 20 (1989), 608–623.

    Article  MathSciNet  MATH  Google Scholar 

  71. F. Otto, Evolution of microstructure in unstable porous media flow: a re-laxational approach, preprint SFB 256, Bonn, 1995.

    Google Scholar 

  72. F. Otto, Dynamics of labyrinthine pattern formation in magnetic fluids: a mean-field theory, to appear in Arch. Rat. Mech. Anal.

    Google Scholar 

  73. R.L. Pego, Phase transitions in one-dimensional nonlinear viscoelasticity: admissibility and stability, Arch. Rat. Mech. Anal. 97 (1987), 353–394.

    Article  MathSciNet  MATH  Google Scholar 

  74. M. Pitteri, Reconciliation of local and global symmetries of crystals, J. Elasticity 14 (1984), 175–190.

    Article  MathSciNet  MATH  Google Scholar 

  75. M. Pitteri and G. Zanzotto, Continuum models for phase transitions and twinning in crystals, Chapman and Hall, forthcoming.

    Google Scholar 

  76. I. Privorotskii, Thermodynamic theory of domain structures, Wiley, 1976.

    Google Scholar 

  77. Yu.G. Reshetnyak, Liouville’s theorem under minimal regularity assumptions, Sib. Math. J. 8 (1968), 631–634.

    Article  Google Scholar 

  78. A. Roitburd, The domain structure of crystals formed in the solid phase, Soviet Physics-Solid State 10 (1969), 2870–2876.

    Google Scholar 

  79. A. Roitburd, Martensitic transformation as a typical phase transformation in solids, Solid State Physics 33, Academic Press, New York, 1978, 317–390.

    Google Scholar 

  80. T. RoubÍček, Relaxation in optimization theory and variational calculus, de Gruyter, 1997.

    Google Scholar 

  81. C. Schreiber, Rapport de stage de D.E.A., ENS Lyon, 1994.

    Google Scholar 

  82. D. Schryvers, Microtwin sequences in thermoelastic Ni xAl100-x martensite studied by conventional and high resolution transmission electron microscopy, Phil. Mag. A 68 (1993), 1017–1032.

    Google Scholar 

  83. V. Sverák, Quasiconvex functions with subquadratic growth, Proc. Roy. Soc. London A 433 (1991), 723–725.

    Google Scholar 

  84. V. Sverák, On regularity for the Monge-Ampère equations, preprint, Heriot-Watt University, 1991.

    Google Scholar 

  85. V. Sverák, Rank-one convexity does not imply quasiconvexity, Proc. Roy. Soc. Edinburgh 120 (1992), 185–189.

    Article  MATH  Google Scholar 

  86. V. Sverák, New examples of quasiconvex functions, Arch. Rat. Mech. Anal 0. 119 (1992), 293–300.

    Article  MATH  Google Scholar 

  87. V. Šverák, On the problem of two wells, in: Microstructure and phase transitions, IMA Vol. Appl. Math. 54 (D. Kinderlehrer, R.D. James, M. Luskin and J. Ericksen, eds.), Springer, 1993, 183–189.

    Google Scholar 

  88. V. Sverák, Lower semincontinuity of variational integrals and compensated compactness, in: Proc. ICM 1994 (S.D. Chatterji, ed.), vol. 2 Birkhäuser, 1995, 1153–1158.

    Google Scholar 

  89. V. Sverák, personal communication.

    Google Scholar 

  90. P. Swart, The dynamical creation of microstructure in material phase transitions, Ph.D. thesis, Cornell University, 1991.

    Google Scholar 

  91. L. Tartar, Compensated compactness and partial differential equations, in: Nonlinear Analysis and Mechanics: Heriot-Watt Symposium Vol. IV (R. Knops, ed.), Pitman, 1979, 136–212

    Google Scholar 

  92. L. Tartar, The compensated compactness method applied to systems ofconservations laws, in: Systems of Nonlinear Partial Differential Equations, (J.M. Ball, ed.), NATO ASI Series, Vol. Clll, Reidel, 1983, 263–285.

    Google Scholar 

  93. L. Tartar, Oscillations and asymptotic behaviour for two semilinear hyperbolic systems, in: Dynamics of infinite dynamical systems, NATO ASI Ser. F, Springer, 1987.

    Google Scholar 

  94. L. Tartar, H-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations, Proc. Roy. Soc. Edinburgh A 115 (1990), 193–230.

    Article  MathSciNet  Google Scholar 

  95. L. Tartar, Some remarks on separately convex functions, in: Microstructure and phase transitions, IMA Vol. Math. Appl. 54, (D. Kinderlehrer, R.D. James, M. Luskin and J.L. Ericksen, eds.), Springer, 1993, 191–204.

    Google Scholar 

  96. L. Tartar, Beyond Young measures, Meccanica 30 (1995), 505–526.

    Article  MathSciNet  MATH  Google Scholar 

  97. L. Tartar, Homogenization, compensated compactness and H-measures, CBMS-NSF conference, Santa Cruz, June 1993, lecture notes in preparation.

    Google Scholar 

  98. F. Theil, Young-measure solutions for a viscoelastically damped wave equation with nonmonotone stress-strain relation,Arch. Rat. Mech. Anal., to appear.

    Google Scholar 

  99. M. Valadier, Young measures, in: Methods of nonconvex analysis, Lecture notes in mathematics 1446, Springer, 1990.

    Google Scholar 

  100. M. Valadier, A course on Young measures, Rend. Istit. Mat. Univ. Trieste 26 (1994) suppl., 349–394.

    Google Scholar 

  101. L.C. Young, Generalized curves and the existence of an attained absolute minimum in the calculus of variations, Comptes Rendus de la Socié té des Sciences et des Lettres de Varsovie, classe III, 30 (1937), 212–234.

    MATH  Google Scholar 

  102. L.C. Young, Lectures on the calculus of variations and optimal control theory, Saunders, 1969 (reprinted by Chelsea 1980).

    Google Scholar 

  103. G. Zanzotto, On the material symmetry group of elastic crystals and the Born rule, Arch. Rat. Mech. Anal. 121 (1992), 1–36.

    Article  MathSciNet  MATH  Google Scholar 

  104. K. Zhang, A construction of quasiconvex functions with linear growth at infinity, Ann. S.N.S. Pisa 19 (1992), 313–326.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Basel AG

About this paper

Cite this paper

Müller, S. (1998). Microstructures, Phase Transitions and Geometry. In: Balog, A., Katona, G.O.H., Recski, A., Sza’sz, D. (eds) European Congress of Mathematics. Progress in Mathematics, vol 169. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8898-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8898-1_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9819-5

  • Online ISBN: 978-3-0348-8898-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics