Skip to main content

Nonlinear Partial Differential Equations, Birkhoff Normal Forms, and KAM Theory

  • Conference paper
European Congress of Mathematics

Part of the book series: Progress in Mathematics ((PM,volume 169))

Abstract

The purpose of this talk is twofold. First, I want to give another example of how tools and techniques which are well proven in the world of finite dimensional dynamical systems may be applied in the world of infinite dimensional evolution equations. In this case the tool is the so-called Birkhoff normal form of Hamiltonian mechanics, which allows Hamiltonian systems near an equilibrium to be viewed as small perturbations of integrable systems. In the infinite dimensional world, such a normal form allows us to view certain nonlinear evolution equations not only as small perturbations of integrable partial differential equation, but also as small perturbations of infinite dimensional, integrable ordinary differential equations. In addition, the calculations involved are rather elementary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. BÄttig, A.M. Bloch, J.-C. Guillot, & T. Kappeler, On the sym-plectic structure of the phase space for periodic KdV, Toda, and defocusing NLS. Duke Math. J. 79 (1995), 549–604.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. BÄttig, T. Rappeler, & B. Mityagin, On the Korteweg-de Vries equation: Convergent Birkhoff normal form. J. Funct. Anal. 140 (1996), 335–358.

    Article  MathSciNet  MATH  Google Scholar 

  3. R.F. Bikbaev & S.B. Kuksin, A periodic boundary value problem for the Sine-Gordon equation, small Hamiltonian perturbations of it, and KAM-deformations of finite-gap tori. Algebra i Analis 4 (1992) [Russian]. English translation in St. Petersburg Math. J. 4 (1993), 439-468.

    Google Scholar 

  4. R.F. Bikbaev & S.B. Kuksin, On the parametrization of finite-gap solutions by frequency vector and wave-number vector and a theorem of I. Krichever. Lett. Math. Phys. 28 (1993), 115–122.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Bobenko & S.B. Kuksin, Finite-gap periodic solutions of the KdV equation are non-degenerate. Physics Letters 161 (1991), 274–276.

    Article  MathSciNet  Google Scholar 

  6. A. Bobenko & S.B. Kuksin, The nonlinear Klein-Gordon equation on an interval as a perturbed sine-Gordon equation. Comment. Math. Helv. 70 (1995), 63–112.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Bourgain, Periodic solutions of hamiltonian perturbations of linear Schrödin-ger equations in higher dimensions. Preprint (1994).

    Google Scholar 

  8. J. Bourgain, Quasi-periodic solutions of hamiltonian perturbations of 2D linear Schrödinger equations. Preprint IHES (1994).

    Google Scholar 

  9. J. Bourgain, Construction of quasi-periodic solutions for hamiltonian perturbations of linear equations and applications to nonlinear pde. Intern. Math. Res. Not. 11 (1994), 475–497.

    Article  MathSciNet  Google Scholar 

  10. J. Bourgain, Construction of approximative and quasi-periodic solutions of perturbed linear Schrödinger and wave equations. Preprint (1995).

    Google Scholar 

  11. J. Bourgain, Construction of periodic solutions of nonlinear wave equations in higher dimension. Geom. Funct. Anal. 5 (1995), 629–639.

    Article  MathSciNet  MATH  Google Scholar 

  12. R.C. Churchill, M. Kummer, & D.L. Rod, On averaging, reduction and symmetry in Hamiltonian systems. J. Diff. Equations 49 (1983), 359–414.

    Article  MathSciNet  MATH  Google Scholar 

  13. W. Craig, Birkhoff normal forms for water waves. Contemporary Mathematics 200 (1996), 57–74.

    Article  MathSciNet  Google Scholar 

  14. W. Craig & C.E. Wayne, Newton’s method and periodic solutions of nonlinear wave equations. Commun. Pure Appl. Math. 46 (1993), 1409–1498.

    Article  MathSciNet  MATH  Google Scholar 

  15. W. Craig & P.A. Worfolk, An integrable normal form for water waves at infinite depth. Physica] D 84 (1995), 513–531.

    Article  MathSciNet  Google Scholar 

  16. J. Denzler, Nonpersistence of breather families for the perturbed sine-Gordon equation. Commun. Math. Phys. 158 (1993), 397–430.

    Article  MathSciNet  MATH  Google Scholar 

  17. A.I. Dyachenko & V.E. Zakharov, IS free-surface hydrodynamics an integrable system? Phys. Lett. A 190 (1994), 144–148.

    Article  MathSciNet  Google Scholar 

  18. H. Ito, Convergence of Birkhoff normal forms for integrable systems. Comment. Math. Helvetici 64 (1989), 412–461.

    Article  MATH  Google Scholar 

  19. T. Kappeler, Fibration of the phase space for the Korteweg-de Vries equation. Ann. Inst. Fourier 41 (1991), 539–575.

    Article  MathSciNet  MATH  Google Scholar 

  20. T. Kappeler & J. PÖschel, Perturbations of KdV equations. In preparation.

    Google Scholar 

  21. I. Rrichever, “Hessians” of integrals of the Korteweg-de Vries equation and perturbations of finite-gap solutions. Funktional. Anal, i Prilozhen. 21 (1987), 22–37. English translation in Soviet Math. Dokl. 27 (1983).

    Google Scholar 

  22. S.B. Kuksin, Hamiltonian perturbations of infinite dimensional linear systems with an imaginary spectrum. Funktsional. Anal. Prilozhen. 21 (1987), 22–37 [Russian]. English translation in Funct. Anal. Appl. 21 (1987), 192-205.

    MathSciNet  MATH  Google Scholar 

  23. S.B. Kuksin, Perturbation theory for quasiperiodic solutions of infinite-dimensional Hamiltonian systems, and its application to the Korteweg-de Vries equation. Matem. Sbornik 136 (1988) [Russian]. English translation in Math. USSR Sbornik 64 (1989), 397-413.

    Google Scholar 

  24. S.B. Kuksin, Conservative perturbations of infinite dimensional linear systems depending on a vector parameter. Funct. Anal. Appl. 23 (1989), 62–63.

    Article  MathSciNet  MATH  Google Scholar 

  25. S.B. Kuksin, Nearly integrable infinite-dimensional Hamiltonian systems. Lecture Notes in Mathematics 1556, Springer, 1993.

    Google Scholar 

  26. S.B. Kuksin, KAM-theory for partial differential equations. In Proceedings First European Congress of Mathematics (Paris 1992), Birkhäuser, Basel, 1994, 123–157.

    Google Scholar 

  27. S.B. Kuksin, A KAM theorem for equations of the Korteweg-de Vries type. Preprint (1996).

    Google Scholar 

  28. S.B. Kuksin & J. PÖschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation. Ann. Math. 143 (1996), 149–179.

    Article  MATH  Google Scholar 

  29. J. PÖschel, On elliptic lower dimensional tori in Hamiltonian systems. Math. Z. 202 (1989), 559–608.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. PÖschel, Quasi-periodic solutions for a nonlinear wave equation. Comment. Math. Helv. 71 (1996), 269–296.

    Article  MathSciNet  MATH  Google Scholar 

  31. J. PÖschel, A KAM-theorem for some nonlinear partial differential equations. Ann. Sc. Norm. Sup Pisa 23 (1996), 119–148.

    MATH  Google Scholar 

  32. J. PÖschel, On the construction of almost periodic solutions for a nonlinear Schrödinger equation. In Proceedings NATO ASI, S’Agaro 1995 (to appear).

    Google Scholar 

  33. C.L. Siegel & J. Moser, Lectures on Celestial Mechanics. Grundlehren 187, Springer, Berlin, 1971.

    Book  MATH  Google Scholar 

  34. I.M. Sigal, Non-linear wave and Schrödinger equations I. Instability of periodic and quasiperiodic solutions. Commun. Math. Phys. 153 (1993), 297–320.

    Article  MathSciNet  MATH  Google Scholar 

  35. C.E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Commun. Math. Phys. 127 (1990), 479–528.

    Article  MathSciNet  MATH  Google Scholar 

  36. V.E. Zakharov, Stability of periodic waves of finite amplitude on the surface of deep fluid. J. Appl. Mech. Phys. 2 (1968), 190–194.

    Google Scholar 

  37. V.E. Zakharov, Space-time spectra of sea waves in the weak turbulence approximation. Seminar talk at the’ Workshop on waves in the Ocean’, MSRI, Berkeley (1994).

    Google Scholar 

  38. V.E. Zakharov & A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Zh. Eksp. Teor. Fiz 61 (1971), 118–134 [Russian]. English translation in Soviet Physics JETP 34 (1972), 62-69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Basel AG

About this paper

Cite this paper

Pöschel, J. (1998). Nonlinear Partial Differential Equations, Birkhoff Normal Forms, and KAM Theory. In: Balog, A., Katona, G.O.H., Recski, A., Sza’sz, D. (eds) European Congress of Mathematics. Progress in Mathematics, vol 169. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8898-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8898-1_10

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9819-5

  • Online ISBN: 978-3-0348-8898-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics